Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=2x^2-x+1=2\left(x^2-x.\frac{1}{2}+\frac{1}{2}\right)=2\left(x^2-2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2+\frac{7}{16}\right)=2\left(x-\frac{1}{4}\right)^2+\frac{7}{4}\)
Vì \(\left(x-\frac{1}{4}\right)\ge0\)
nên \(2\left(x-\frac{1}{4}\right)^2+\frac{7}{16}\ge\frac{7}{16}\)
Vậy \(Min_C=\frac{7}{16}\)khi \(x-\frac{1}{4}=0\Rightarrow x=\frac{1}{4}\)
a ) \(B=x^2-x\)
\(=x^2-x+\frac{1}{4}-\frac{1}{4}\)
\(=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
Mà \(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(\Rightarrow B_{min}=-\frac{1}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x=\frac{1}{2}\)
a/ giá trị nhỏ nhất của A là 2
b/ giá trị lớn nhất của B là 51
tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm
Ta có: x + y = 1
<=> (x + y)3 = 1
<=> x3 + y3 + 3xy(x + y) = 1
<=> x3 + y3 + 3xy = 1 (do x + y = 1)
<=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x = y = 12
\(A=\frac{3x^2+3xy+3y^2-2x^2-4xy-2y^2}{x^2+xy+y^2}=3-\frac{2\left(x+y\right)^2}{x^2+xy+y^2}\le3\)
\(A=\frac{\frac{1}{3}x^2+\frac{1}{3}xy+\frac{1}{3}y^2+\frac{2}{3}x^2-\frac{4}{3}xy+\frac{2}{3}y^2}{x^2+xy+y^2}=\frac{1}{3}+\frac{\frac{2}{3}\left(x-y\right)^2}{x^2+xy+y^2}\ge\frac{1}{3}\)
ta đi chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)(tự chứng minh nhé, nhân chéo lên xong phân tích ra nó sẽ ra (a-b)^2/ab lớn hơn bằng 0)
\(M=\frac{18}{2xy}+\frac{17}{x^2+y^2}\ge\frac{17.4}{\left(x+y\right)^2}+\frac{1}{2xy}\)
Chứng minh được \(2xy\le\frac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\Rightarrow M\ge\frac{68}{16^2}+\frac{2}{\left(x+y\right)^2}=\frac{17}{64}+\frac{2}{16^2}=\frac{35}{128}\)
Đẳng thức xảy ra <=> x=y=8