Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(|3x-5|+|3x-7|\)
\(=|3x-5|+|7-3x|\)
\(\ge|3x-5+7-3x|\)
\(=2\)
Dấu "=" xảy ra khi \(\left(3x-5\right)\left(7-3x\right)\ge0\Leftrightarrow\frac{5}{3}\le x\le\frac{7}{3}\)
Đặt biểu thức trên là A ta có :
\(A=\left|3x-5\right|+\left|3x-7\right|\)
\(A=\left|5-3x\right|+\left|3x-7\right|\ge\left|5-3x+3x-7\right|=\left|-2\right|=2\)
\(\Rightarrow A\ge2\)
Dấu bằng xảy ra
\(\Leftrightarrow\left(5-3x\right)\left(3x-7\right)\ge0\)
\(\Leftrightarrow\frac{5}{3}\le x\le\frac{7}{3}\)
Vậy .................................
1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)
*TH1: Nếu x-2y = 5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)
*TH2: Nếu x-2y = -5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)
Vậy giá trị nhỏ nhất của 3x - 2z là -57.
2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)
Dấu "=" xảy ra khi x = 0.
A=3x-17/4-x
=>(-1)A=17-3x/4-x
=>(-1)A=12-3x+5/4-x
=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)
Để A có GTNN=>-3-(5/4-x) có GTNN
=>5/4-x có GTLN
=>4-x có GTNN =>=>4-x=-5=>x=9
=>A=3.9-17/4-9
=>A=10/-5
=>A=-2
Vậy..........
a) \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất \(=-1\)
b) \(\left(x-2\right)^2+5\ge5\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)
Vậy giá trị lớn nhất \(=\frac{3}{5}\)
Tìm giá trị nhỏ nhất của biểu thức:
a. K =(x+ \(\frac{1}{3}\))2 - \(\frac{2}{5}\)
b. H= 8 + 5 . |3x+1|
vi (x+ 1/3 )2 ≥0
=>(x+ 1/3)2+ 2/5 ≥ 2/5
vậy dấu ''='' sảy ra khi x+1/3=0 =>x=-1/3
vậy giá trị nhỏ nhất là 2/5 khi x=-1/3
bạn ghi sai rồi -2/5 chuyển thành +2/5
\(A=x^2-3x+5\)
\(A=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(A=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu "=" xảy ra khi \(x=\frac{3}{2}\)