\(x^2-3x-2\)

B=\(x^2+y^2-xy-\le...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

các bạn giải nhanh cho mình nhé vì mình đang cần gấp

7 tháng 12 2018

Mình nghĩ bạn viết hơi sai đề bài.

\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)

Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)

\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)

Khi đó:

 \(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)

\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)

\(M=\frac{3}{x^2-4x+5}\)

\(=\frac{3}{x^2-4x+4+1}\)

\(=\frac{3}{\left(x-2\right)^2+1}\le3\)

\(Max_M=3\Leftrightarrow x=2\)

2 tháng 7 2019

\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(=9x\)

Thay x=15 \(\Rightarrow A=9.15=135\)

4 tháng 7 2019

\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)

\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)

\(=19x^2y^2-11xy^3-8x^3\)

Thay x=1/2 ; y=2 vào B \(\Rightarrow19.\left(\frac{1}{2}\right)^2.2^2-11\cdot\frac{1}{2}\cdot2^3-8\cdot\left(\frac{1}{2}\right)^3\)

\(=19-44-1\)

\(=-26\)

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2

14 tháng 8 2021

đk : x khác 2; x khác 3; x khác 1

\(a.A=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right)\cdot\frac{x^2-4x+3}{x^4+x^2+1}\)

\(A=\left(\frac{x^2}{\left(x-2\right)\left(x-3\right)}+\frac{x^2}{\left(x-1\right)\left(x-2\right)}\right)\cdot\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(A=\left(\frac{x^2\left(x-1\right)+x^2\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\right)\cdot\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(A=\frac{x^2\left(x-1+x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\cdot\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(A=\frac{x^2\left(2x-4\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}=\frac{2x^2}{x^4+x^2+1}\)

\(b.\frac{1}{A}=\frac{x^4+x^2+1}{2x^2}=\frac{x^2}{2}+\frac{1}{2}+\frac{1}{2x^2}\) (x khác 0)

\(\frac{1}{A}=\frac{2x^2}{4}+\frac{1}{2}+\frac{1}{2x^2}\)

có 2x^2/4 và 1/2x^2 > 0 áp dụng bđt cô si ta có 

\(\frac{2x^2}{4}+\frac{1}{2x^2}\ge2\sqrt{\frac{2x^2}{4}\cdot\frac{1}{2x^2}}=1\)

\(\Rightarrow\frac{1}{A}\ge\frac{3}{2}\)

\(\Rightarrow A\le\frac{2}{3}\)

DẤU = xảy ra khi 2x^2/4 = 1/2x^2 => 4x^4 = 4

=> x^4 = 1 

=> x = 1 (loại) hoặc x = -1  (thỏa mãn)

vậy max a = 2/3 khi x = -1

16 tháng 5 2020

\(A\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(1+\frac{9}{x+y+z}\right)^2}{3}=\frac{10^2}{3}=\frac{100}{3}\)

ĐTXR ⇔ x = y = z = (x+y+z)/3  = 1/3