K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

x2+5x+7

=x2+2.x.5/2+(5/2)2+7-25/4

=(x+5/2)2+3/4

Vì (x+5/2)2 >= 0 với mọi x

=> (x+5/2)2+3/4 >= 0+3/4 

=> (x+5/2)2+3/4 >= 3/4

Vậy GTNN là 3/4

Dấu ''='' xảy ra khi x+5/2=0

=>                          x=-5/2.

30 tháng 8 2016

A=(x+5/2)^2+11/2  \(\ge\)11/2

dấu bằng xảy ra khi x=-5/2

B=\(-\left(x-3\right)^2+4\le4\)

dấu bằng xảy ra khi x=3

17 tháng 7 2016

a,A=x^2+2.x.5/2+25/4+3/4

    =(x+5/2)2+3/4

nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4

vậy GTNN của A là 3/4

b,B=6x-x2-5

    = - (x2-6x+5)

    = - (x2-2.x.3+9-4)

    =-[(x-3)2-4]

    =-(x-3)^2+4

nx; -(x-3)^2 luôn nhỏ  hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4

Vậy GTLN của B là 4

29 tháng 8 2020

\(x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy GTNN của bt trên = 3/4 <=> x = - 5/2

29 tháng 8 2020

Trả lời :

\(x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{28}{4}=\left(x^2+2.\frac{5}{x}+\frac{25}{4}\right)+\frac{3}{4}\)

\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

Mà \(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=\frac{-5}{2}\)

Vậy GTNN của biểu thức là \(\frac{3}{4}\Leftrightarrow x=\frac{-5}{2}\)

\(A=-5x^2-4x+7\)

\(\Leftrightarrow-5A=25x^2+20x-35\)

\(\Leftrightarrow-5A=\left(25x^2+20x+4\right)-39\)

\(\Leftrightarrow-5A=\left(5x+2\right)^2-39\)

Ta có: 

\(\left(5x+2\right)^2-39\ge39\Rightarrow A\le\frac{-39}{5}\)

Dấu '' = '' xảy ra khi: \(x=\frac{-2}{5}\)

1 tháng 7 2018

\(A=x^2+5x+7\)

\(A=\left(x^2+5x+\frac{25}{4}\right)+\frac{3}{4}\)

\(A=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+\frac{5}{2}\right)^2=0\)

\(\Leftrightarrow\)\(x+\frac{5}{2}=0\)

\(\Leftrightarrow\)\(x=\frac{-5}{2}\)

Vậy GTNN của \(A\) là \(\frac{3}{4}\) khi \(x=\frac{-5}{2}\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

\(B=6x-x^2-5\)

\(-B=x^2-6x+5\)

\(-B=\left(x^2-6x+9\right)-4\)

\(-B=\left(x-3\right)^2-4\ge-4\)

\(B=-\left(x-3\right)^2+4\le4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTLN của \(B\) là \(4\) khi \(x=3\)

Chúc bạn học tốt ~ 

30 tháng 10 2016

GTNN:=5

30 tháng 10 2016

\(x^2+5x+7=x^2+5x+\frac{25}{4}-\frac{5}{4}=\left(x+\frac{5}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)-5/4. GTNN =-5/4 .Hình như thế

15 tháng 7 2019

V1.a)Ta có : \(A=x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

Ta có : \(\left(x+\frac{5}{2}\right)^2\ge0=>\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "="xảy ra khi \(x+\frac{5}{2}=0=>x=-\frac{5}{2}\)

Vậy\(A_{min}=\frac{3}{4}\) khi \(x=-\frac{5}{2}\)

b)Ta có : \(B=6x-x^2-5=-\left(x^2-6x+5\right)=-[\left(x-3\right)^2-4]\)

Ta có : \(\left(x-3\right)^2\ge0=>B\le4\)

Dấu "="xảy ra khi (x-3)=0=>x=3

Vậy \(B_{mãx}=4\)khi x=3


 

15 tháng 7 2019

Bài 1: Tìm giá trị:

a) Nhỏ nhất của biểu thức: A = x2 + 5x + 7

Giải phương trình trên máy tính 

Lặp 3 lần dấu" = "

kq : GTNN của A = \(-\frac{5}{2}\)

b) Lớn nhất của biểu thức: B = 6x - x2 - 5

B = -x2 + 6x - 5

Giải phương trình trên máy tính 

Lặp 3 dấu " = "

kq : GTLN của B = 3