![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(P=\frac{x^2-2x+2016}{x^2}=\frac{1}{x^2}\left(x^2-2x+2016\right)\)
Tìm GTNN:
Ta dễ thấy P nhỏ nhất khi \(x^2-2x+2016\) bé nhất
Ta có: \(x^2-2x+2016\)
\(=x^2-2x+1+2015\)
\(=\left(x^2-2x+1\right)+2015\)
\(=\left(x-1\right)^2+2015\ge2015\) (do \(\left(x-1\right)^2\ge0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Thay x = 1 vào biểu thức,ta có: \(P=\frac{1}{x^2}\left[\left(x-1\right)^2+2015\right]\ge2015\)
Vậy \(P_{min}=2015\Leftrightarrow x=1\)
Còn về tìm GTLN thì ta thấy không tìm được vì \(x\ge1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bất đẳng thức AM - GM t có:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge4\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)(1)
Tương tự t có: \(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)(2)
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge z\)(3)
Từ (1); (2); (3) t có:
\(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{z+x}+\frac{x+z}{4}\right)+\left(\frac{x^2}{x+y}+\frac{x+y}{4}\right)\ge x+y+z\)
Từ x + y + z \(\ge\) 4, t có:
\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{x^2}{x+y}\ge\frac{x+y+z}{4}\)
Vậy giá trị nhỏ nhất của P là 1, đạt được khi \(x=y=z=\frac{2}{3}\)
áp dụng bđt Bunyakovsky dạng phân thức ta có: P >=(x+y+z)^2/(x+y+z)=(x+y+z)/2=2
đẳng thức xảy ra <=> x=y=z=4/3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(P=\frac{3}{2}\left(x+y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(\ge\frac{3}{2}.6+2\sqrt{\frac{3x}{2}.\frac{6}{x}}+2\sqrt{\frac{8}{y}.\frac{y}{2}}=9+6+4=19\)
\("="\Leftrightarrow x=2;y=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ x khác -1
A =\(\frac{\frac{3}{4}x^2+2.\frac{3}{4}x+\frac{3}{4}+\frac{1}{4}x^2-2\frac{1}{4}x+\frac{1}{4}}{x^2+2x+1}\)
=\(\frac{\frac{3}{4}\left(x+1\right)^2+\frac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}\)
=\(\frac{3}{4}+\frac{\frac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}\) >=\(\frac{3}{4}\)( do \(\frac{\frac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}\)>=0 )
Vậy GTNN của A là \(\frac{3}{4}\)
Đẳng thức xảy ra khi x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có : \(\dfrac{98x^2-2}{x-2}=0\Leftrightarrow\left\{{}\begin{matrix}98x^2-2=0\\x-2\ne0\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x^2=\dfrac{1}{49}\\x\ne2\end{matrix}\right.\Leftrightarrow x=\pm\dfrac{1}{7}\)
Vậy giá trị của phân thức này bằng 0 khi \(x=\pm\dfrac{1}{7}\)
b, Ta có : \(\dfrac{3x-2}{x^2+2x+1}=0\Leftrightarrow\dfrac{3x-2}{\left(x+1\right)^2}=0\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\\left(x+1\right)^2\ne0\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\x\ne-1\end{matrix}\right.\)
Vậy giá trị của phân thức này bằng 0 khi \(x=\dfrac{2}{3}\)
a)
98x^2 -2 =0 =>x^2 =1/49 => x= -+1/7 nhận
b)
3x-2=0=>x=2/3 nhận
![](https://rs.olm.vn/images/avt/0.png?1311)
A= \(1 \over x+1\)+(x+1)+2014
áp dụng BĐT cô si cho 2 số dương
\(\frac{1}{x+1}+x+1\) \(\ge\) \(2\sqrt{\frac{1}{x+1}.x+1}\)
\(\frac{1}{x+1}+x+1+2014\ge2+2014\)
A\(\ge2016\)
khi A+2016 thì \(\frac{1}{x+1}=x+1\)
\(\left(x+1\right)^2\)=\(1\)
x+1=1
x=0
vậy min A=2016 khi x=0
Cho các số thực dương x,y thoả mãn xy+x+y\(\ge\)8. Tìm giá trị nhỏ nhất của biểu thức P= \(x^2+y^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(8\le xy+x+y\le\frac{\left(x+y\right)^2}{4}+x+y\)
Từ đó suy ra \(a+b\ge4\Rightarrow16\le\left(a+b\right)^2\le2\left(a^2+b^2\right)=2P\Rightarrow P\ge8\)
Vậy..
P/s: chắc là vậy đó!
Đặt \(A=\dfrac{x}{x+2}=1-\dfrac{2}{x+2}\)
do \(x\ge0\Leftrightarrow x+2\ge2\Leftrightarrow\dfrac{1}{x+2}\le\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{-1}{x+2}\ge-\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{-2}{x+2}\ge-1\Leftrightarrow A=1-\dfrac{2}{x+2}\ge0\)
Dấu "=" xảy ra khi x = 0
\(\Rightarrow A_{min}=0\) khi x = 0