Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, x2+3x+7 = x2+2.x.3/2 +(3/2)2+19/4 = (x+3/2)2 + 19/4 >=19/4
B, = (x2-7x+10)(x2-7x-10) = (x2-7x)2 - 100 >= -100
C, = 5x2+5 >=5
\(\text{Giải}\)
\(\text{ĐKXD:}\)\(x\ne1;x\ne4;x\ne-8\)
\(A=\frac{x^2-5x+4}{x^2+7x-8}=\frac{\left(x-1\right)\left(x-4\right)}{\left(x-1\right)\left(x+8\right)}=\frac{x-4}{x+8}\)
\(A\inℤ\Leftrightarrow x-4⋮x+8\Leftrightarrow\left(x+8\right)-\left(x-4\right)⋮x+8\)
\(\Leftrightarrow12⋮x+8\Leftrightarrow x+8\in\left\{\pm1;\pm2;\pm3;\pm6;\pm12\right\}\)
\(\Leftrightarrow x\in\left\{-9;-7;-6;-10;-5;-11;-2;-14;4;-20\right\}\)
\(c,A=1\Leftrightarrow x-4=x+8\left(\text{vô lí}\right)\)
\(\text{Vậy không thể tìm được x sao cho: A=1}\)
mình nghĩ là "vô nghiệm" chứ ko phải "vô lí" đúng ko
vô lí hay là vô nghiệm
\(A=2x^2-6x-\sqrt{7}\)
\(=2\left(x^2-3x-\sqrt{\frac{7}{2}}\right)\)
\(=2\left(x^2-3x+\frac{9}{4}-\frac{9+2\sqrt{7}}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{4}\right]\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\ge-\frac{9+2\sqrt{7}}{2}\)
Vậy \(Min_A=\frac{-9+2\sqrt{7}}{2}\Leftrightarrow x=\frac{3}{2}\)