K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

\(P\ge!x-3!+x^2+1\ge!x^2-x+3!+1\ge!\left(x-\frac{1}{2}\right)^2+\frac{3}{4}!+1\ge\frac{7}{4}\)

Đẳng thức khi y=0 ; x=1/2

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

23 tháng 8 2021

Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)

\(=>-\frac{2}{5}|x-1|+1\le1\)

Dấu "=" xảy ra \(< =>x=1\)

Vậy Max A = 1 khi x = 1

14 tháng 3 2017

Giá trị nhỏ nhất là -1

Đạt được khi x=-3; 3 và y=3

15 tháng 3 2017

sửa (x-3)^2

GTNN=5 khi x=3 và y=1

15 tháng 3 2017

\(\left(x-3\right)^2+\left(y-1\right)^2+5\)

ta có \(\hept{\begin{cases}\left(x-3\right)^2\ge0x\varepsilon r\\\left(y-1\right)^2\ge0y\varepsilon r\end{cases}}\)

=>\(\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\) với mọi x.y \(\varepsilon\) R

=>biểu thức đạt giá trij lớn nhất là 5 tại

\(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{cases}=>\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

14 tháng 3 2017

Để biểu thức đạt nhỏ nhất thì (2x-3)4 đạt nhỏ nhất.

Lại có: (2x-3)4=[(2x-3)2]2 >=0

=> giá trị nhỏ nhất của nó là =0

=> giá trị nhỏ nhất là: -2

Đạt được khi x=3/2

27 tháng 8 2016

2a/ Ta có: \(\left|x+1\right|\ge0\Rightarrow A=\left|x+1\right|+5\ge5\) 

Đẳng thức xảy ra khi: |x + 1| = 0  => x = -1

Vậy giá trị nhỏ nhất của A là 5 khi x = -1