\(\dfrac{\sqrt{x}}{x+3\sqrt{x}+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2021

Đk: \(x\ge0\)

\(P=\dfrac{\sqrt{x}}{x+3\sqrt{x}+4}\)

\(\Leftrightarrow x.P+\sqrt{x}\left(3P-1\right)+4P=0\) (1)

Xét P=0 <=> x=0(tm)

Xét \(P\ne0\) .Coi pt (1) là phương trình ẩn \(\sqrt{x}\)

Phương trình (1) có nghiệm không âm khi \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\S\ge0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-7P^2-6P+1\ge0\\\dfrac{1-3P}{P}\ge0\\4\ge0\left(lđ\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le P\le\dfrac{1}{7}\\0< P\le\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow0< P\le\dfrac{1}{7}\)

Kết hợp với P=0 \(\Rightarrow0\le P\le\dfrac{1}{7}\)

\(\dfrac{1}{7}>0\) => maxP=\(\dfrac{1}{7}\). Thay \(P=\dfrac{1}{7}\) vào (1) tìm được x=4 (tm)

minP=0 <=> x=0

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

21 tháng 10 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

19 tháng 3 2021

a/ \(P=12\)

b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )

19 tháng 3 2021

a. Thay x = 3 vào biểu thức P ta được :

\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)

b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c, Ta có :

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)

Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

2 tháng 7 2021

Áp dụng bất đẳng thức Bu-nhia-cốp-xki ta được:

\(\left(x-2+4-x\right)\left(1+9\right)\ge\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\).

\(\Leftrightarrow20\ge P^2\Leftrightarrow-\sqrt{20}\le P\le\sqrt{20}.\)

Dấu bằng bạn tự tìm dấu bằng xảy ra của BĐT Bunhiacopxki nha, trên mạng có nhiều.

4 tháng 12 2016

$B = \sqrt{x-4} + \sqrt{12 -x}$

+) $B^2 = 8 + 2\sqrt{(x-4)(12-x)} \geqslant 8 + 2 \cdot 0 = 8 \implies B \geqslant \sqrt{8}$

Vậy $B_\text{min} = \sqrt{8} \iff (x-4)(12-x) = 0 \iff x =4$ hoặc $x =12 \implies (x;y) =\{ (4;11);(12;3)\}$

+) $B^2 = 8 + 2\sqrt{(x-4)(12-x)} = 8 + 2\sqrt{-x^2 + 16x - 48} = 8 + 2\sqrt{-(x-8)^2 + 16} \leqslant 8 + 2\sqrt{16} = 16 \implies B \geqslant 4$

Vậy $B_\text{max} =4 \iff x = 8 \iff (x;y) = (8;7)$

4 tháng 7 2018

\(A^2=x+2+2\sqrt{\left(x+2\right)\left(2-x\right)}+2-x==4+2\sqrt{\left(x+2\right)\left(2-x\right)}\ge4\)

\(\Rightarrow A\ge2\).Nên GTNN của A là 2 đạt được khi \(\sqrt{\left(x+2\right)\left(2-x\right)}=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

Áp dụng BĐT Bunhiacopxki ta có:

 \(A^2=\left(\sqrt{x+2}+\sqrt{2-x}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x+2}\right)^2+\left(\sqrt{2-x}\right)^2\right]\)

      \(=2.\left(x+2+2-x\right)=2.4=8\)

\(\Rightarrow A\le\sqrt{8}\).Nên GTLN của A là \(\sqrt{8}\) đạt được khi \(\frac{\sqrt{x+2}}{1}=\frac{\sqrt{2-x}}{1}\Leftrightarrow\sqrt{x+2}=\sqrt{2-x}\)

\(\Rightarrow x+2=2-x\Leftrightarrow2x=0\Leftrightarrow x=0\)

4 tháng 7 2018

bunhiacopxki là gì vậy ????????????????????

1 tháng 7 2021

\(D=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}\)

\(=\sqrt{2}\)

dấu "=" xảy ra khi: \(\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{4-x}=0\end{cases}\orbr{\begin{cases}x=2\\x=4\end{cases}}}\)

vậy MIN \(D=\sqrt{2}\)

\(D=\sqrt{x-2}+\sqrt{4-x}\le\frac{x-2+1+4-x+1}{2}=4\)

dấu "=" xảy ra khi \(x=3\)

vậy \(MAX:D=4\)

1 tháng 7 2021

\(D=\sqrt{x-2}+\sqrt{4-x}\)

\(\Rightarrow D^2=x-2+2\sqrt{\left(x-2\right)\left(4-x\right)}+4-x=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

*GTNN

Với 2 ≤ x ≤ 4 => \(2\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Leftrightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\)

hay D2 ≥ 2 => D ≥ √2 . Dấu "=" xảy ra <=> x = 2 hoặc x = 4 (tm)

*GTLN

Áp dụng bất đẳng thức AM-GM ta có :

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\le4\)

hay D2 ≤ 4 => D ≤ 2 . Dấu "=" xảy ra <=> x = 3 (tm)

Vậy \(\hept{\begin{cases}Min_D=\sqrt{2}\Leftrightarrow x=2orx=4\\Max_D=2\Leftrightarrow x=3\end{cases}}\)