\(A=\left(x-3\right)\left(7-x\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(x-3\right)\left(7-x\right)=-x^2+10x-21=-\left(x^2-10x+25\right)+4\)

\(A=-\left(x-5\right)^2+4\le4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-5\right)^2=0\)\(\Leftrightarrow\)\(x=5\)( thỏa mãn \(3\le x\le7\) ) 

... 

Còn cách này hay hơn nhé :)) dùng Cosi 

Vì \(3\le x\le7\) nên \(A=\left(x-3\right)\left(7-x\right)\ge0\)

\(\Rightarrow\)\(\sqrt{A}=\sqrt{\left(x-3\right)\left(7-x\right)}\le\frac{x-3+7-x}{2}=\frac{4}{2}=2\)\(\Leftrightarrow\)\(A=2^2=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x-3=7-x\)\(\Leftrightarrow\)\(x=5\) ( thỏa mãn \(3\le x\le7\) ) 

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

25 tháng 5 2017

\(2P=\sqrt{\left(4x+1\right)\left(8-4x\right)}\le\frac{4x+1+8-4x}{2}=\frac{7}{2}\)

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

25 tháng 7 2016

Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .

\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)

\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)

25 tháng 7 2016

Bài 2 :

a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)

b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)

 

5 tháng 9 2017

ko biet

30 tháng 4 2020

Từ giả thiếu suy ra: (x2+y2)2-4(x2+y2)+3=-x2 =<0

Do đó: A2-4A+3 =<0

<=> (A-1)(A-3) =<0 

<=> 1 =<A=<3

Vậy MinA=1 <=> x=0; y=\(\pm\)1

       MaxA=3 <=> x=0; y=\(\pm\sqrt{3}\)

14 tháng 10 2017

Đặt \(x^2+\left(3-x\right)^2=a\ge5\)

Ta có: 

\(x\left(3-x\right)=-\frac{1}{2}\left(2x^2-6x\right)\)

\(=-\frac{1}{2}\left(x^2-6x+9+x^2-9\right)\)

\(=-\frac{1}{2}\left(x^2+\left(3-x\right)^2-9\right)=-\frac{1}{2}\left(a-9\right)\)

Áp dụng ta có: 

\(P=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2=\left(x^2+\left(3-x\right)^2\right)^2+4x^2\left(3-x\right)^2\)

\(=a^2+\left(a-9\right)^2\)

\(=2a^2-18a+81=\left(2a^2-20a+50\right)+2a+31\)

\(=2\left(a-5\right)^2+2a+31\ge0+2.5+31=41\)