Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)
=>x+4/15=8/5 hoặc x+4/15=-8/5
=>x=4/3 hoặc x=-28/15
b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)
c: \(\Leftrightarrow\left|x-1\right|-1=1\)
=>|x-1|=2
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
Bài 2:
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)
Bài 3:
a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)
Dấu '=' xảy ra khi x=-15/19
b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu '=' xảy ra khi x=4/7
a)Ta thấy:
\(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)
\(=\dfrac{\left(x+a\right)-x}{x\left(x+a\right)}\)
\(=\dfrac{a}{x\left(x+a\right)}\)
\(\Rightarrowđpcm\)
b)Ta thấy:
\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)}-\dfrac{x\left(x+1\right)}{x\left(x+1\right)^2\left(x+2\right)}\)
\(=\dfrac{x+2}{x\left(x+1\right)\left(x+2\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)-x}{x\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\Rightarrowđpcm\)
c)Ta thấy:
\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}-\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}=\dfrac{x+3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{x+3-x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\Rightarrowđpcm\)
a/ \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)
Ta có: \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)
\(=\dfrac{\left(x-x\right)+a}{x\left(x+a\right)}\) hay \(\dfrac{a}{x\left(x+a\right)}\)
\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\left(đpcm\right)\)
Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)
Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)
K chép lại đề, lm luôn nhé:
*\(\Rightarrow\) \(\left(\dfrac{7}{2}+2x\right)\cdot\dfrac{8}{3}=\dfrac{16}{3}\)
\(\Rightarrow\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(\Rightarrow2x=2-\dfrac{7}{2}=-\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{3}{4}\)
* \(\Rightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{\dfrac{3}{4}-2}{2}=-\dfrac{5}{8}\)
=> K có gt x nào t/m đề
* Đề sai
* \(\Rightarrow\left[{}\begin{matrix}3x-1=0\\-\dfrac{1}{2}x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=10\end{matrix}\right.\)
*\(\Rightarrow\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=-\dfrac{21}{4}\)
\(\Rightarrow2x-1=\dfrac{1}{3}:\left(-\dfrac{21}{4}\right)=-\dfrac{4}{63}\)
\(\Rightarrow2x=-\dfrac{4}{63}+1=\dfrac{59}{63}\)
\(\Rightarrow x=\dfrac{59}{63}:2=\dfrac{59}{126}\)
* \(\Rightarrow\left(2x+\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{3}{5}=\dfrac{3}{5}\\2x+\dfrac{3}{5}=-\dfrac{3}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=0\Rightarrow x=0\\2x=-\dfrac{6}{5}\Rightarrow x=-\dfrac{3}{5}\end{matrix}\right.\)
* \(\Rightarrow-5x-1-\dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Rightarrow-5x-\dfrac{1}{2}x-\dfrac{3}{2}x=-\dfrac{5}{6}+1-\dfrac{1}{3}\)
\(\Rightarrow-7x=-\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{1}{6}:7=-\dfrac{1}{42}\)
a)\(\left(3\dfrac{1}{2}+2x\right).2\dfrac{2}{3}=5\dfrac{1}{3}\)
\(\left(\dfrac{7}{2}+2x\right).\dfrac{8}{3}=\dfrac{16}{3}\)
\(\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(2x=2-\dfrac{7}{2}=\dfrac{-3}{2}\Rightarrow x=\dfrac{-3}{4}\)
b)\(\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(2.\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2=\dfrac{-1}{4}\)
\(\Rightarrow\left|2x-3\right|=\dfrac{-1}{8}\)
\(\Rightarrow x\in\varnothing\)
c) Đề sai,bạn có viết chữ x đâu,đó là phép tính mà.
d)\(\left(3x-1\right)\left(\dfrac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-1}{2}x+5=0\Rightarrow x=10\)
e)\(\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=\dfrac{-21}{4}\)
\(2x-1=\dfrac{1}{3}:\dfrac{-21}{4}=\dfrac{-4}{63}\)
\(\Rightarrow2x=\dfrac{59}{63}\Rightarrow x=\dfrac{59}{126}\)
g)\(\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(\left(2x+\dfrac{3}{5}\right)^2=0+\dfrac{9}{25}=\dfrac{9}{25}\)
\(\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2=\left(\dfrac{-3}{5}\right)^2\)
\(th1:x=0\)
\(th2:x=\dfrac{-3}{5}\)
h)\(-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(-5x+-1-\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Leftrightarrow-5x+-1+\dfrac{5}{6}-\dfrac{1}{3}=2x\)
\(-5x+\dfrac{-1}{2}=2x\)
\(\dfrac{-1}{2}=2x+5x\)
\(\dfrac{-1}{2}=7x\Rightarrow x=\dfrac{-1}{14}\)
a: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=-1/2 hoặc x=1/3
b:
c: \(\Leftrightarrow x\cdot\left(\dfrac{13}{4}-\dfrac{7}{6}\right)=\dfrac{5}{12}+\dfrac{5}{3}=\dfrac{5}{12}+\dfrac{20}{12}=\dfrac{25}{12}\)
\(\Leftrightarrow x=\dfrac{25}{12}:\dfrac{39-14}{12}=\dfrac{25}{25}=1\)
Bài 1:
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right):\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
\(=\left(-\dfrac{9}{5}-\dfrac{12}{5}-\dfrac{7}{3}\right):\left(\dfrac{9}{20}-\dfrac{5}{12}+-3\right)\)
\(=\left(-\dfrac{27}{15}-\dfrac{36}{15}-\dfrac{21}{15}\right):\left(\dfrac{27}{60}-\dfrac{25}{60}+-3\right)\)
\(=\left(-\dfrac{28}{5}\right):\left(-\dfrac{89}{30}\right)\)
\(=\left(-\dfrac{28}{5}\right).\left(-\dfrac{30}{89}\right)\)
\(=\dfrac{168}{89}\)
Mấy bài này bạn tự làm đi, chuyển vế tìm x gần giống cấp I mà.
b)\(\dfrac{-3}{5}.x=\dfrac{1}{4}+0,75\)
=>\(\dfrac{-3}{5}.x=1\)
=>\(x=1:\dfrac{-3}{5}\)
=>\(x=\dfrac{-5}{3}\)
Vậy \(x=\dfrac{-5}{3}\)
Câu 1: Lời giải:
a, Đặt \(A=\dfrac{3x+7}{x-1}\).
Ta có: \(A=\dfrac{3x+7}{x-1}=\dfrac{3x-3+10}{x-1}=\dfrac{3x-3}{x-1}+\dfrac{10}{x-1}=3+\dfrac{10}{x-1}\)
Để \(A\in Z\) thì \(\dfrac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\dfrac{3x+7}{x-1}\in Z\).
Câu 3:
a, Ta có: \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)
Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(MAX_P=2010\) khi x = -1
b, Ta có: \(-\left|3-x\right|\le0\)
\(\Rightarrow Q=1010-\left|3-x\right|\le1010\)
Dấu " = " khi \(\left|3-x\right|=0\Rightarrow x=3\)
Vậy \(MAX_Q=1010\) khi x = 3
c, Vì \(\left(x-3\right)^2+1\ge0\) nên để C lớn nhất thì \(\left(x-3\right)^2+1\) nhỏ nhất
Ta có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\)
\(\Rightarrow C=\dfrac{5}{\left(x-3\right)^2+1}\le\dfrac{5}{1}=5\)
Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy \(MAX_C=5\) khi x = 3
d, Do \(\left|x-2\right|+2\ge0\) nên để D lớn nhất thì \(\left|x-2\right|+2\) nhỏ nhất
Ta có: \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+2\ge2\)
\(\Rightarrow D=\dfrac{4}{\left|x-2\right|+2}\le\dfrac{4}{2}=2\)
Dấu " = " khi \(\left|x-2\right|=0\Rightarrow x=2\)
Vậy \(MAX_D=2\) khi x = 2