Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t=\(\sqrt{x^2+2x+5}\left(t>0\right)\)
\(\Rightarrow y=\frac{t^2+1}{t}\)
\(\Rightarrow t^2+1-yt=0\)
Để pt có ng0 thì \(\Delta\ge0\)
\(\Rightarrow y^2-4\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}y\le-2\\y\ge2\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}x^2+2x+6>0\\\sqrt{x^2+2x+5}>0\end{matrix}\right.\)nên y>0
\(\Rightarrow y\ge2\Rightarrow y_{min}=2\)
\(\Leftrightarrow x^2+2x+6=2\sqrt{x^2+2x+5}\)
\(\Leftrightarrow\left(\sqrt{x^2+2x+5}-1\right)^2=0\)
\(\Leftrightarrow x^2+2x+4=0\)(vô nghiệm)
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
tìm giá trị nhỏ nhất của biểu thức:
D= x+2y -√2x−y- 5√4y−3+ 13 ( x≥12 ; y≥ 34 )