\(A=\frac{2}{1-x}+\frac{1}{x}\)với\(0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có :

\(\left[\left(\sqrt{\frac{2}{1-x}}\right)^2+\left(\sqrt{\frac{1}{x}}\right)^2\right]\left[\sqrt{1-x}^2+\sqrt{x}^2\right]\ge\left(\sqrt{\frac{2}{1-x}}.\sqrt{1-x}+\sqrt{\frac{1}{x}}.\sqrt{x}\right)^2\)

\(\Rightarrow\left(\frac{2}{1-x}+\frac{1}{x}\right)\left(1-x+x\right)\ge\left(\sqrt{2}+\sqrt{1}\right)^2\Rightarrow A\ge3+2\sqrt{2}\)

Dấu "=" xảy ra khi \(x=\sqrt{2}-1\)

12 tháng 7 2020

Với mọi 0 < x < 1 ta có: 

\(A=\frac{2}{1-x}+\frac{1}{x}=\frac{\left(\sqrt{2}\right)^2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)

Dấu "=" xảy ra <=> \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}=\sqrt{2}+1\Rightarrow x=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

Kết luận:...

3 tháng 7 2018

bài này lp 8 cx làm dc , CTV mà ngu lonee :)

nhờ vào năng lực rinegan của chúa pain , ta  có thể dễ  dàng nhìn ra ......

\(1-x=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right).\)          dkxd , x dương và x khác 1

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(1-\sqrt{x}\right)-\sqrt{x}+4}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)\)

\(P=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left(\frac{\sqrt{x}-x-\sqrt{x}+4}{1-x}\right)\)

\(p=\frac{\left(\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}{-\left(x-4\right)}\)

\(P=\frac{\left(\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{1-\sqrt{x}}{-\sqrt{x}-2}\)

B)  dkxd có x luôn dương 

   vậy ta suy ra  \(-\left(\sqrt{x}+2\right)< 0\) " âm"

vậy để \(\frac{1-\sqrt{x}}{-\left(\sqrt{x}+2\right)}< 0\)

 thì \(1-\sqrt{x}>0\)  " vì số dương chia cho số âm luôn bé hơn 0 "

      \(-\sqrt{x}>-1\Leftrightarrow\sqrt{x}< 1\)

 để p dương thì  ................  0<x<1 

c)

\(\frac{1-\sqrt{x}}{-\sqrt{x}+2}=\frac{2-\sqrt{x}+1}{-\sqrt{x}+2}=1+\frac{1}{-\sqrt{x}+2}\)

vì x dương " dkxd " 

suy ra  \(\orbr{\begin{cases}\sqrt{x}+2\ge2\\-\sqrt{x}+2\le2\end{cases}}\)

vì " năm ở mẫu " 

\(\frac{1}{-\sqrt{x}+2}\ge\frac{1}{2}\)

\(1+\frac{1}{-\sqrt{x}+2}\ge1+\frac{1}{2}=\frac{3}{2}\)

dấu = xảy ra khi x = 0

3 tháng 7 2018

d!t , sửa lại câu C , thành 2-1 , ko phải 2 +1 :) 

5 tháng 5 2016

Đề bị sai?

12 tháng 11 2015

\(=\sqrt{x}+1+\frac{8}{\sqrt{x}+1}-1\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{8}{\sqrt{x}+1}}-1=4\sqrt{2}-1\)

\(Min=4\sqrt{2}-1\Leftrightarrow\sqrt{x}+1=2\sqrt{2}\Leftrightarrow x=\sqrt{2\sqrt{2}-1}\)