Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) `(x-3)^4 >=0`
`2.(x-3)^4>=0`
`2.(x-3)^4-11 >=-11`
`=> A_(min)=-11 <=> x-3=0<=>x=3`
2) `|5-x|>=0`
`-|5-x|<=0`
`-3-|5-x|<=-3`
`=> B_(max)=-3 <=>x=5`.
Bài 1:
Ta có: \(\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4-11\ge-11\forall x\)
Dấu '=' xảy ra khi x=3
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
a)\(A=16-\left|x+2,5\right|\)
Vì \(\left|x+2,5\right|\ge0\Rightarrow A\le16-0=16\)
\(\Rightarrow MAX_A=16\Leftrightarrow x=-2,5\)
b)A=\(\left|x+2,5\right|-16\)
Vì \(\left|x+2,5\right|\ge0\Rightarrow A\ge0-16=-16\)
\(\Rightarrow MIN_A=-16\Leftrightarrow x=-2,5\)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(M=\left|\frac{1}{3}-x\right|+5\ge5\forall x\)
Dấu ''='' xảy ra khi x = 1/3
Vậy GTNN của M bằng 5 tại x = 1/3
\(N=-\left|x+\frac{2}{3}\right|+2\le2\forall x\)
Dấu ''='' xảy ra khi x = -2/3
Vậy GTLN của N bằng 2 tại x = -2/3
tìm giá trị nhỏ nhất của M=5+|1/3-x|
Vì ∣∣∣13−x∣∣∣≥0|13−x|≥0 với mọi x (Giá trị tuyệt đối của một số luôn không âm)
Nên A=5+∣∣∣13−x∣∣∣≥5A=5+|13−x|≥5 với mọi x
Ta có: A=5⇔∣∣∣13−x∣∣∣=0⇔x=13A=5⇔|13−x|=0⇔x=13
Vậy Amin=5Amin=5 với x = 13
\(A=12-\left(2,5-y\right)^4\le12\)
\(maxA=12\Leftrightarrow y=2,5\)
\(B=10-\left(3+4y\right)^2-\left(x-2y\right)^2\le10\)
\(maxB=10\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)
ta có: /2,5-x/\(\ge\)0, nên A= /2,5-x/ + 5,8 \(\ge\)5,8
vậy giá trị nn của A là 5,8, A=5,8 khi /2,5-x/=0
<=> x=2,5
ta có: /x+2/3/ \(\ge\)0 nên B= 2 - /x+2/3/ \(\le\)2
vậy gtln của B là 2, B=2 khi /x+2/3/=0 <=> x= -2/3