Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^8-1}{\left(x^4+1\right)\left(x^2-1\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^4+x^2+1\right)}{\left(x^4+1\right)\left(x^2-1\right)}\)
\(=\frac{x^4+x^2+1}{x^4+1}\)
\(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\)
\(=\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)
\(=\frac{\left(x+y-2\right)\left(x+y+2\right)}{\left(x+2-y\right)\left(x+2+y\right)}\)
\(=\frac{x+y-2}{x+2-y}\)
\(\frac{4x^2+12x+9}{2x^2-x-6}\)
\(=\frac{\left(2x+3\right)^2}{2x^2-4x+3x-6}\)
\(=\frac{\left(2x+3\right)^2}{2x\left(x-2\right)+3\left(x-2\right)}\)
\(=\frac{\left(2x+3\right)^2}{\left(2x+3\right)\left(x-2\right)}\)
\(=\frac{2x+3}{x-2}\)
\(\frac{25-10x+x^2}{xy-5y}\)
\(=\frac{\left(5-x\right)^2}{-y\left(5-x\right)}\)
\(=-\frac{5-x}{y}\)
\(\frac{\left|x\right|-3}{x^2-9}\)
\(=\frac{x-3}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{1}{x+3}\)
\(\frac{3\left|x-4\right|}{3x^2-3x-36}\)
\(=\frac{3\left(x-4\right)}{3\left(x^2-x-12\right)}\)
\(=\frac{x-4}{x^2-4x+3x-12}\)
\(=\frac{x-4}{x\left(x-4\right)+3\left(x-4\right)}\)
\(=\frac{x-4}{\left(x-4\right)\left(x+3\right)}\)
\(=\frac{1}{x+3}\)
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
\(P=2x\left(x+y\right)=2x^2+2xy\) Với x khác y, x khác -y
\(3x^2+y^2+2x-2y=1\)\(\Leftrightarrow2x^2+2xy+y^2+x^2+1-2xy+2x-2y=2\)
\(\Leftrightarrow P+\left(x-y+1\right)^2=2\)\(\Leftrightarrow P=2-\left(x-y+1\right)^2\le2\)vì \(\left(x-y+1\right)^2\ge0\)với mọi x, y là số thực
Vì P nguyên dương => P=1
Khi đó \(\left(x-y+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-y+1=-1\\x-y+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=-2\\x-y=0\left(loai\right)\end{cases}}\)
vì x khác y
1) \(3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+1=3\left(x+\frac{1}{3}\right)^2+1\ge1\Rightarrow Min=1\Leftrightarrow x=-\frac{1}{3}\)
2) \(2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2-2xy+y^2+3xy\right)-3\left(x^2-2xy+y^2+4xy\right)=\left(x-y\right)^2\left(12xy-12xy\right)=0\)
3) đặt \(2x-1=t\Rightarrow x^2=\frac{t+1}{2}^2\Leftrightarrow\left(t+2\right)^3-4\frac{t+1}{2}^2\left(t-2\right)-5=0\Leftrightarrow\left(t+2\right)^3-\left(t+1\right)^2\left(t-2\right)-5=0\)\(\Leftrightarrow t^3+6t^2+12t+8-t^3-2t^2+t+2t^2+4t+2=0\Leftrightarrow6t^2+16t+10=0\Leftrightarrow\left(t+1\right)\left(6t+10\right)=0\)
=> t=-1 hoặc t=-10/6 \(\Leftrightarrow2x-1=-1\Leftrightarrow x=0\) hoặc \(2x-1=-\frac{10}{6}\Leftrightarrow x=-\frac{1}{3}\)
Bài 2: Áp dụng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\left|x^2+x+3\right|+\left|-x^2-x+6\right|\ge\left|x^2+x+3-x^2-x+6\right|=\left|9\right|=9\)
Bài 1
Ta có (a-b)2 >=0
=) a2 + b2 >= 2ab
Cộng 2 vế BĐT cho a2 + b2 ta được:
a2 + b2 + a2 + b2 >= a2 + b2 +2ab
=) 2( a2 + b2 ) >= ( a + b)2
=) a2 + b2 >= ( a + b)2/2
Nhân 2 vế BĐT cho 1/2 ta được
a2 + b2 /2 >= ( a + b)2/4
Hay a2 + b2 /2 >= (a+b/2)2
Dấu '=' XRK : a=b