Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì \(\left|x-y-5\right|\ge0\forall x;y;2019\left|y-3\right|^{2020}\ge0\forall y\)
\(\Rightarrow\left|x-y-5\right|+2019\left|y-3\right|^{2020}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-y-5\right|=0\\2019\left|y-3\right|^{2020}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=5\\y=3\end{cases}}\)
b. \(2\left(x-5\right)^4\ge0\forall x;5\left|2y-7\right|^5\ge0\forall y\)
\(\Rightarrow2\left(x-5\right)^4+5\left|2y-7\right|^5\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}2\left(x-5\right)^4=0\\5\left|2y-7\right|^5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-5=0\\2y-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\y=\frac{7}{2}\end{cases}}\)
a.
| x | + \(\left|-\frac{2}{5}\right|=-\frac{5}{3}\)
| x | + \(\frac{2}{5}=-\frac{5}{3}\)
| x | = \(-\frac{5}{3}-\frac{2}{5}\)
| x | = \(-\frac{31}{15}\)
\(\Rightarrow x\in\varnothing\)vì trị đối \(\ge\)0
Vậy x \(\in\varnothing\)
b.
| x - 3 | = \(\frac{4}{5}\)
\(\Rightarrow\)x - 3 = \(\frac{4}{5}\)hoặc \(-\frac{4}{5}\)
\(\Rightarrow\)x = \(\frac{4}{5}+3\)hoặc \(-\frac{4}{5}+3\)
\(\Rightarrow\)x = \(\frac{19}{5}\)hoặc \(\frac{11}{5}\)
Vậy x \(\in\){ \(\frac{19}{5}\); \(\frac{11}{5}\)}
c.
| x - 7 | = \(\frac{5}{3}\)
\(\Rightarrow\)x - 7 = \(\frac{5}{3}\)hoặc \(-\frac{5}{3}\)
\(\Rightarrow\)x = \(\frac{5}{3}+7\)hoặc \(-\frac{5}{3}+7\)
\(\Rightarrow\)x = \(\frac{26}{3}\)hoặc \(\frac{16}{3}\)
Vậy x \(\in\){ \(\frac{26}{3}\); \(\frac{16}{3}\)}
d.
| x - \(\frac{1}{2}\)| = \(\frac{1}{4}\)
\(\Rightarrow\)x - \(\frac{1}{2}\)= \(\frac{1}{4}\)hoặc \(-\frac{1}{4}\)
\(\Rightarrow\)x = \(\frac{1}{4}+\frac{1}{2}\)hoặc \(-\frac{1}{4}+\frac{1}{2}\)
\(\Rightarrow\)x = \(\frac{3}{4}\)hoặc \(\frac{1}{4}\)
Vậy x \(\in\){ \(\frac{3}{4}\); \(\frac{1}{4}\)}
e.
| x - 7 | = \(-\frac{5}{3}\)
\(\Rightarrow\)x - 7 = \(-\frac{5}{3}\)hoặc \(\frac{5}{3}\)
\(\Rightarrow\)x = \(-\frac{5}{3}+7\)hoặc \(\frac{5}{3}+7\)
\(\Rightarrow\)x = \(\frac{16}{3}\)hoặc \(\frac{26}{3}\)
Vậy x \(\in\){ \(\frac{16}{3}\); \(\frac{26}{3}\)}
a) Ta có:
\(\frac{3}{x+2}=\frac{5}{2x+1}\)
\(\Rightarrow3\left(2x+1\right)=5\left(x+2\right)\)
\(\Rightarrow6x+3=5x+10\)
\(\Rightarrow6x-5x=10-3\)
\(\Rightarrow x=7\)
b)Ta có:
\(\frac{5}{8x-2}=\frac{-4}{7-x}\)
\(\Rightarrow5\left(7-x\right)=-4\left(8x-2\right)\)
\(\Rightarrow35-5x=-32x+8\)
\(\Rightarrow-5x+32x=8-35\)
\(\Rightarrow27x=-27\)
\(\Rightarrow x=-1\)
c) Ta có:
\(\frac{4}{3}=\frac{2x-1}{x}\)
\(\Rightarrow4x=3\left(2x-1\right)\)
\(\Rightarrow4x=6x-3\)
\(\Rightarrow3=6x-4x=2x\)
\(\Rightarrow x=\frac{3}{2}\)
d)Ta có:
\(\frac{2x-1}{3}=\frac{3x+1}{4}\)
\(\Rightarrow4\left(2x-1\right)=3\left(3x+1\right)\)
\(\Rightarrow8x-4=9x+3\)
\(\Rightarrow8x-9x=3+4\)
\(\Rightarrow-x=7\Rightarrow x=-7\)
e)Ta có:
\(\frac{4}{x+2}=\frac{7}{3x+1}\)
\(\Rightarrow4\left(3x+1\right)=7\left(x+2\right)\)
\(\Rightarrow12x+4=7x+14\)
\(\Rightarrow12x-7x=14-4\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\)
f)Ta có:
\(\frac{-3}{x+1}=\frac{4}{2-2x}\)
\(\Rightarrow-3\left(2-2x\right)=4\left(x+1\right)\)
\(\Rightarrow-6+6x=4x+4\)
\(\Rightarrow6x-4x=4+6\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=5\)
a, -5/6 -x = 7/12 + -1/3
⇔-10/12 - 12x/12 = 7/12 + -4/12
⇒-10 - 12x = 7 - 4
⇔-12x = 7 - 4 +10
⇔-12x = 13
⇔x = -13/12
b, x+13/-15 = 1/3
⇔-(x+13)/15 = 5/15
⇒ -x - 13 = 5
⇔-x = 5 +13
⇔-x = 18
⇔x = -18
c,-15/x-1 = -3/5
⇔-75/(x-1).5 = -3.(x-1)/5.(x-1)
⇒-75 = -3x + 3
⇔3x = 3 + 75
⇔3x = 78
⇔x = 26
d, (1/2).x + -2/5 = 1/5
⇔5x/10 + -4/10 = 1/10
⇒5x - 4 = 1
⇔5x = 1 + 4
⇔5x = 5
⇔x = 1
e, (-2/3).x + 1/5 = 1/10
⇔-20x/30 + 6/30 = 3/30
⇒-20x + 6 = 3
⇔-20x = 3 - 6
⇔-20x = -3
⇔x = 3/20
f, 4/5 - (1/2).x = 1/10
⇔8/10 - 5x/10 = 1/10
⇒8 - 5x = 1
⇔-5x = 1 - 8
⇔-5x = -7
⇔x=7/5
a) \(\frac{5}{6}=\frac{x-1}{x}\)
\(5x=6x-6\)
\(6x-5x=6\)
\(x=6\)
các câu còn lại lm tương tự
hok tốt!!
b) \(\frac{1}{2}=\frac{x+1}{3x}\)
\(\Rightarrow1.3x=2.\left(x+1\right)\)
\(3x=2x+2\)
\(3x-2x=2\)
\(x=2\)
Vậy x=2
các câu khác bạn làm tương tự
b)\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
=> n-5 thuộc Ư(7)
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
1)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)
A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)
A = \(\frac{1}{1}-\frac{1}{101}\)
A = \(\frac{100}{101}\)
Vậy A = \(\frac{100}{101}\)
B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}.\frac{100}{101}\)
B = \(\frac{250}{101}\)
Vậy B = \(\frac{250}{101}\)
2)
Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản
Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ...
dễ mà bạn suy nghĩ nhá
chiu dai the!!1