K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)

\(=2x^3-3x-5x^3-x^2+x^2\)

\(=-3x^3-3x\)

26 tháng 10 2016

x (2x2-3)-x2(5x+1) + x2

= x[(2x2-3)-x(5x+1)+x]

=x(2x2-3-5x2-x+x)

=x(-3x2-3)

=-3x3-3x

12 tháng 10 2016

x = -5/2

(pt tích: abc = 0 => a=0

b=0

c =0)

12 tháng 10 2016

bạn có thể giải giúp mình câu hỏi  về toán được ko?

 

 

26 tháng 12 2016

a)so 2 cuoi

27 tháng 12 2016

ban co tim dc 2 chu so tan cung kngoam

10 tháng 9 2018

a) \(x^2-6x+3\)

\(=x^2-2.x.3+9-6\)

\(=\left(x-3\right)^2-\left(\sqrt{6}\right)^2\)

\(=\left(x-3-\sqrt{6}\right)\left(x-3+\sqrt{6}\right)\)

b) \(9x^2+6x-8\)

\(=\left(3x\right)^2+2.3x+1-9\)

\(=\left(3x+1\right)^2-3^2\)

\(=\left(3x+1-3\right)\left(3x+1+3\right)\)

\(=\left(3x-2\right)\left(3x+4\right)\)

10 tháng 9 2018

d) \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x+3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

e) \(x^3+4x^2-29x+24\)

\(=x^3+8x^2-4x^2-32x+3x+24\)

\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)

\(=\left(x+8\right)\left(x^2-4x+3\right)\)

\(=\left(x+8\right)\left(x^2-3x-x+3\right)\)

\(=\left(x+8\right)\left[x\left(x-3\right)-\left(x-3\right)\right]\)

\(=\left(x+8\right)\left(x-3\right)\left(x-1\right)\)

17 tháng 6 2016

 

A=x (x+1) (x+2) (x+3)

=x(x+3)(x+1)(x+2)

=(x2+3x)+(x2+3x+2)

=(x2+3x)2+2(x2+3x)

=(x2+3x)2+2(x2+3x)+1-1

=(x2+3x+1)2-1\(\ge\)-1

Dấu "=" xảy ra khi x2+3x+1=0

                         <=>\(x=\frac{-3+\sqrt{5}}{2}\) hoặc \(x=\frac{-3-\sqrt{5}}{2}\)

Vậy GTNN của A là -1 tại x=\(\frac{-3+\sqrt{5}}{2}\) hoặc \(x=\frac{-3-\sqrt{5}}{2}\)

 

17 tháng 6 2016

 

B=x2- 4x + y2 - 8y + 6

=x2-4x+4+y2-8y+16-14

=(x-2)2+(y-4)2-14\(\ge\)-14

Dấu "=" xảy ra khi: x=2 và y=4

Vậy GTNN của B là -14 tại x=2 và y=4

 

11 tháng 9 2016

nhanh len mnlimdim

11 tháng 9 2016

Với x=79=>80=x+1.

Ta có:

B=x7 -(x+1)x6 + (x+1)x-(x+1)+...+(x+1)x +15

  =x- x7+..+x+15=79+15=94

9 tháng 10 2016

mk chỉ làm bài 1 và 1 câu bài 2 vi no tuong duong

1. x+x +2 = 86

x = số thứ nhất = 42

x+2 = số t2    = 44

2.a) x2-6x +10 = (x-3)2 +1 >0 với mọi x

(vì (x-3)2 >= 0)

12 tháng 10 2016

b) x2 - 4x +3 = (x -1)(x -3) =0

x -1 = 0

x = 1

x-3 = 0

x = 3

a: \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\ge2\)

b: \(6x-x^2+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left(x-3\right)^2+10\le10\)

18 tháng 6 2017

Bài 1:

Áp dụng hằng đẳng thức số 5 ta có:

\(1-\left(1-3\right)^3=1-\left(1-3.1.3+3.1.3^2-3^2\right)\)

\(=1-\left(1-9+27-9\right)=1-1+9-27+9=-9\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 1:

\(1-\left(1-3\right)^3=1+2^3=\left(1+2\right)\left(1-2+4\right)\)

hđt: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Bài 3:

a, \(A=4x-x^2=-x^2+4x\)

\(=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]\)

\(=-\left(x-2\right)^2+4\)

Ta có: \(-\left(x-2\right)^2\le0\)

\(\Leftrightarrow A=-\left(x-2\right)^2+4\le4\)

Dấu " = " xảy ra khi \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(MAX_A=4\) khi x = 2

b, \(B=x-x^2=-x^2+x\)

\(=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

Dấu " = " khi \(-\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MAX_B=\dfrac{1}{4}\) khi \(x=\dfrac{1}{2}\)

c, \(C=2x-2x^2-5\)

\(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le\dfrac{-9}{2}\)

Dấu " = " khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MAX_C=\dfrac{-9}{2}\) khi \(x=\dfrac{1}{2}\)

Bài 4:

\(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)