Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\left(x-2011\right)^2\ge0\)
\(|y-2012|\ge0\)
\(\Rightarrow\left(x-2011\right)^2+|y-2012|+2013\ge2013\)
Để A đạt giá trị nhỏ nhất thì dấu " = " xảy ra khi :
\(A=2013\)
+) \(E=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)
\(\Rightarrow2E=4x^2-56x+242=\left(4x^2-56x+196\right)+46=\left(2x-14\right)^2+46\)
Vì \(\left(2x-14\right)^2\ge0\Rightarrow2E=\left(2x-14\right)^2+46\ge46\Rightarrow E\ge23\)
Dấu "=" xảy ra khi x=7
Vậy Emin=23 khi x=7
+) \(F=\frac{-2}{x^2-2x+5}=\frac{-2}{x^2-2x+1+4}=\frac{-2}{\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow F=\frac{-2}{\left(x-1\right)^2+4}\le-\frac{2}{4}=-\frac{1}{2}\)
Dấu "=" xảy ra khi x=1
Vậy Fmin=-1/2 khi x=1
+) \(G=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt x2-5x=t, ta được:
\(G=\left(t-6\right)\left(t+6\right)=t^2-36=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\Rightarrow G=\left(x^2-5x\right)^2-36\ge36\)
Dấu "=" xảy ra khi x=0 hoặc x=5
Vậy Gmin=36 khi x=0 hoặc x=5
Đặt 2x^2 + x +2013 = a, x^2-5x+2012 = b
Ta có: a^2 + 4b^2 = 4ab
a^2 - 4ab + 4b^2 = 0
(a-2b)^2 = 0
Do đó: a = 2b
Hay: 2x^2 + x -2013 = 2(x^2 -5x -2012)
2x^2 + x -2013 = 2x^2 -10x -4024
x-2013 = -10x -4024
x+10x = -4024+2013
11x = -2011
x = -2011/11
Bạn hỏi nhiều câu hay đấy. Chúc bạn học tốt.
\(P=\left(x-2012\right)^2+\left(x+2013\right)^2\)(1)
Đặt \(t=x-2012\)
\(\left(1\right)=t^2+\left(t+4025\right)^2\)
\(=t^2+t^2+8050t+4025^2\)
\(=2t^2+8050t+4025^2\)
\(=2\left(t^2+4025t\right)+4025^2\)
\(=2\left(t^2+2t\frac{4025}{2}+\frac{4025^2}{4}\right)-\frac{4025^2}{2}+4025^2\)
\(=2\left(t+\frac{4025}{2}\right)^2+4025^2-\frac{4025^2}{2}\ge4025^2-\frac{4025^2}{2}\forall t\)
Dấu"=" xảy ra khi \(t+\frac{4025}{2}=0\Rightarrow t=-\frac{4025}{2}\)
Mà:\(x-2012=t\)
\(\Rightarrow x-2012=-\frac{4025}{2}\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(Min_P=\frac{4025^2}{2}\Leftrightarrow x=-\frac{1}{2}\)