Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{-1}{5}=\frac{x-2}{8}\)
\(\Rightarrow\frac{x-2}{8}=\frac{-1}{5}\) (Bước này có thể có hoặc không, mình chỉ ghi để dễ hiểu thôi)
\(\Rightarrow\left(x-2\right).5=8.\left(-1\right)\)
\(\Rightarrow\left(x-2\right).5=-8\)
\(\Rightarrow x-2=-\frac{8}{5}\)
\(\Rightarrow x=\frac{-8}{5}+2\)
\(\Rightarrow x=\frac{2}{5}=0,4\)
C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé
E = | 3x + 1 | + 2| x - y | + 1
\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)
=> MinE = 1 <=> x = y = -1/3
F = 5| x - 1 | + 1/2| 2x + y | + 2020
\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
=> MinF = 2020 <=> x = 1 ; y = -2
C = 2| x - 1 | + | 2x + 3 | - 2020
= | 2x - 2 | + | 2x + 3 | - 2020
= | 2x - 2 | + | -( 2x + 3 ) | - 2020
= | 2x - 2 | + | -2x - 3 | - 2020
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 2 )( -2x - 3 ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)
=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)
D = | 3 - 2x | + 2| 1 - x | + 1/2
= | 3 - 2x | + | 2 - 2x | + 1/2
= | -( 3 - 2x ) | + | 2 - 2x | + 1/2
= | 2x - 3 | + | 2 - 2x | + 1/2
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 3 )( 2 - 2x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)
=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)
(x^2+1)(x-1)(x+3)>0
Vì x^2+1>0 với mọi x
nên: (x-1)(x+3)>0
Trường hợp 1:
x-1<0, x+3 <0
Vì x+3 > x-1 nên x+3<0 suy ra x<-3
Trường hợp 2:
x-1>0, x+3>0
Vì x-1<x+3 nên x-1 >0 suy ra x>1
Vậy x<-3 hoặc x>1
Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương
TH1: Có 2 số âm, 1 số dương
Trước hết ta có \(x+3>x-1\)
\(x^2+1>x-1\)
Vì vậy \(x-1< 0\)
\(x^2+1>0\) nên \(x+3< 0\)
\(\Rightarrow x< -3\left(< 1\right)\)
TH2: Cả 3 số đều dương
Xét số bé nhất lớn hơn 0:
\(x-1>0\Rightarrow x>1\)
Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)
1. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)
2. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)
a) \(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)
\(\Rightarrow\left(\frac{3}{5}-\frac{2}{3}-1\right).x=\frac{-5}{21}:\frac{1}{7}=\frac{-5}{3}\)
\(\Rightarrow\frac{-16}{15}.x=\frac{-5}{3}\Rightarrow x=\frac{-5}{3}:\frac{-16}{15}=\frac{25}{16}\)
b) \(\left(x-\frac{1}{4}\right)^2=\frac{1}{36}\)
\(\Rightarrow\left(x-\frac{1}{4}\right)^2=\left(±\frac{1}{6}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{4}=\frac{1}{6}\\x-\frac{1}{4}=\frac{-1}{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{12}\\x=\frac{1}{12}\end{cases}}\)
2a/ Ta có: \(\left|x+1\right|\ge0\Rightarrow A=\left|x+1\right|+5\ge5\)
Đẳng thức xảy ra khi: |x + 1| = 0 => x = -1
Vậy giá trị nhỏ nhất của A là 5 khi x = -1
Ta có: \(\hept{\begin{cases}\left|x^2-1\right|+2\ge2\\\frac{6}{\left(y+1\right)^2+3}\le\frac{6}{3}=2\end{cases}}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=\pm1\\y=-1\end{cases}}\)
`N = x^2 +3|y-2| -1`
Ta có: `{(x^2 >= 0 ),(|y-2| >=0):}`
`=> {(x^2 >= 0 ),(3|y-2| >=0):}`
`=> x^2 +3|y-2| >= 0`
`=> x^2 +3|y-2| -1 >=- 1`
Hay `N >= -1`
Dấu = xảy ra khi:
`{(x^2 = 0 ),(|y-2| =0):}`
`<=> {(x = 0 ),(y-2 =0):}`
`<=> {(x = 0 ),(y=2):}`
Vậy `N_(min) = -1 <=> {(x = 0 ),(y=2):}`
-------------------------------------------------
`K = ( x+2)^2+( y-1/5)^2 -8`
Ta có: `{(( x+2)^2 >=0),(( y-1/5)^2 >=0):}`
`=> ( x+2)^2+( y-1/5)^2 >= 0`
`=> ( x+2)^2+( y-1/5)^2 -8 >=- 8`
Hay `K >= -8`
Dấu = xảy ra khi:
`{(( x+2)^2 =0),(( y-1/5)^2 =0):}`
`<=> {( x+2 =0),( y-1/5 =0):}`
`<=> {( x=-2),( y=1/5):}`
Vậy `K_(min) = -8 <=> {( x=-2),( y=1/5):}`