\(P=8x^2+3y^2-8xy-6y+21\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

Ta có : 

\(P=8x^2+3y^2-8xy-6y+21\)

\(=\left(8x^2-8xy+2y^2\right)+\left(y^2-6y+9\right)+12\)

\(=2\left(4x^2-4xy+y^2\right)+\left(y-3\right)^2+12\)

\(=2\left(2x-y\right)^2+\left(y-3\right)^2+12\)

Ta có 

\(2\left(2x-y\right)^2+\left(y-3\right)^2\ge0\) với mọi x , y 

Suy ra : 

\(2\left(2x-y\right)^2+\left(y-3\right)^2+12\ge12\)

\(\Leftrightarrow P\ge12\)

 Dấu " = " xảy ra khi \(2x-y=y-3=0\) .  Suy ra  \(x=\frac{3}{2},y=3\)

Vậy GTNN của P là 12, đạt được khi \(x=\frac{3}{2},y=3\)

10 tháng 12 2016

\(3y^2+x^2+2xy+2x+6y+2017=x^2+2x\left(y+1\right)+\left(y+1\right)^2+\left(2y^2+4y+2\right)+2014\)

\(=\left(x+y+1\right)^2+2\left(y+1\right)^2+2014\ge2014\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y+1=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy BT đạt GTNN bằng 2014 tại (x;y) = (0;-1)

30 tháng 8 2017

Cần chứng minh bđt : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2=\left(\left|a+b\right|\right)^2\)

\(\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+b^2+2ab\)

\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng)

Từ đó áp dụng ta được :

\(A\ge\sqrt{\left(x^2-6x+2y^2+4y+11\right)+\left(x^2+2x+3y^2+6y+4\right)}\)

\(\Leftrightarrow A\ge\sqrt{2x^2-4x+5y^2+10y+15}\)

\(\Leftrightarrow A\ge\sqrt{\left(2x^2-4x+2\right)+\left(5y^2+10y+5\right)+8}\)

\(\Leftrightarrow A\ge\sqrt{2\left(x-1\right)^2+5\left(y+1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\) có gtnn là \(2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\)

5 tháng 7 2016

\(A=\sqrt{x^2-6x+9+2\left(y^2+2y+1\right)}+\sqrt{x^2+2x+1+3\left(y^2+2y+1\right)}.\)

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

Với mọi giá trị được xác định của x; giá trị của biến y không phụ thuộc vào x, ta luôn có:

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\le\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+1\right)^2}\)(1)

Dấu "=" khi y = -1.

(1) \(\Rightarrow A\le\left|x-3\right|+\left|x+1\right|\)(2)

  • \(x< -1\)(2) \(\Rightarrow A\le-\left(x-3\right)-\left(x+1\right)=-2x+2>4\forall x< -1\)
  • \(-1\le x\le3\)(2) \(\Rightarrow A\le-\left(x-3\right)+\left(x+1\right)=4\forall-1\le x\le3\)
  • \(x>3\)(2) \(\Rightarrow A\le\left(x-3\right)+\left(x+1\right)=2x-2>4\forall x>3\)

Vậy GTNN của A = 4 khi -1<= x <= 3 và y = -1.

28 tháng 8 2019

Cả tử và mẫu đồng bậc:)) Em thử nha, ko chắc..

Với y = 0 thì x khác 0 và \(P=\frac{8x^2}{x^2}=8\)

Với y khác 0, chia cả tử và mẫu của P cho y2. Ta có:

\(P=\frac{8\left(\frac{x}{y}\right)^2+6.\frac{x}{y}}{\left(\frac{x}{y}\right)^2+1}\). Đặt \(\frac{x}{y}=t\)

Thế thì: \(P=\frac{8t^2+6t}{t^2+1}\)

Bí.

25 tháng 2 2020

biểu thức đã cho (=) (8-P)x2 + 6yx -Py2=0

tìm denta ra thì đc như sau: y2(-P2+8P+9) >=0  =) -P2+8P+9 >=0 

phần còn lại bấm máy tính ra kết quả là   -1=<P=<9

Min=-1  và Max=9 

9 tháng 10 2017

Lời giải:

\(A=3x^2+11y^2-2xy-2x+6y-1\)

\(\Leftrightarrow A=\left(x^2+y^2+\frac{1}{4}-2xy-x+y\right)+2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+10\left(y^2+\frac{1}{2}y+\frac{1}{16}\right)-2\)

\(\Leftrightarrow A=\left(x-y-\frac{1}{2}\right)^2+2\left(x-\frac{1}{4}\right)^2+10\left(y+\frac{1}{4}\right)^2-2\)

Thấy rằng \(\hept{\begin{cases}\left(x-y-\frac{1}{2}\right)^2\ge0\\\left(x-\frac{1}{4}\right)^2\ge0\\\left(y+\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow A\ge-2\)

Vậy \(A_{min}=-2\Leftrightarrow\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{4}=0\\y+\frac{1}{4}=0\end{cases}\Leftrightarrow x=\frac{1}{4};y=\frac{-1}{4}}\)