\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

17 tháng 2 2020

1. Xét điều kiện:

\(\hept{\begin{cases}x-1\ge0\\x-x^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1\ge0\left(1\right)\\x\left(1-x\right)\ge0\left(2\right)\end{cases}}\)

(1) <=> x \(\ge\)1 > 0   thay vào (2) ta có: 1 - x \(\ge\)0 <=> x \(\le\)1

Do đó chỉ có thể xảy ra trường hợp x = 1

=> ĐK : x = 1

Với x = 1 thử vào phương trình ta có: 0 - 0 + 2 = 2 ( thỏa mãn)

Vậy x = 1 là nghiệm của phương trình.

17 tháng 2 2020

bài 2: ĐK:\(0\le x\le1\)

+) Với điều kiện: A,B không âm

 \(\left(A+B\right)^2\ge A^2+B^2\)(1)

<=> \(A^2+B^2+2AB\ge A^2+B^2\)

<=> \(2AB\ge0\)luôn đúng

Dấu "=" xảy ra <=> A = 0 hoặc B = 0

Áp dụng với \(\left(\sqrt{1-x}+\sqrt{x}\right)^2\ge1-x+x=1\)

=> \(\sqrt{1-x}+\sqrt{x}\ge1\)

Dấu "=" xảy ra <=>  x = 0 hoặc x = 1

+) Với điều kiện C, D không âm

\(\left(C+D\right)^2\ge C^2-D^2\)(2)

Thật vậy: (2)<=> \(2CD+D^2\ge-D^2\)

<=> \(D\left(C+D\right)\ge0\)luôn đúng

Dấu "=" xayra <=> D = 0 hoặc C + D = 0

Áp dụng" \(\left(\sqrt{1+x}+\sqrt{x}\right)^2\ge1+x-x=1\)

=> \(\sqrt{1+x}+\sqrt{x}\ge1\)

Dấu "=" xảy ra <=> x = 0 

Vậy khi đó: 

\(P=\sqrt{1-x}+\sqrt{1+x}+\sqrt{4x}\)

\(=\left(\sqrt{1-x}+\sqrt{x}\right)+\left(\sqrt{1+x}+\sqrt{x}\right)\)

\(\ge1+1=2\)

Dấu "=" xảy ra <=> x = 0

NM
20 tháng 3 2021

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)

\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x\left(\sqrt{x}+1\right)}=\frac{x}{\sqrt{x}-1}\)

b. ta có \(x=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)

vậy \(P=\frac{4}{\sqrt{4}-1}=4\)

c.\(P=\frac{x}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2+2=4\)

vậy \(\sqrt{P}\ge2\)

31 tháng 8 2017

ĐKXĐ: \(x\ge1\)

\(A=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=|1-\sqrt{x-1}|+|\sqrt{x-1}+1|\)

\(\ge|1-\sqrt{x-1}+\sqrt{x-1}+1|=2\)

Vậy GTNN của A là 2 khi \(1\le x\le2.\)

5 tháng 9 2017

ko biet

28 tháng 12 2019

đề tuyển sinh Hà Nội. có mà ko tìm à

ĐK : \(0\le x\le1\)

\(\Rightarrow0\le1-x\le1\)\(\Rightarrow\sqrt{1-x}\ge1-x\)

Mà \(2\sqrt{x}\ge2x;\sqrt{1+x}\ge1\)

\(\Rightarrow P\ge1-x+2x+1=x+2\ge2\) 

\(\Rightarrow MinP=2\Leftrightarrow x=0\)

28 tháng 12 2019

em đang ôn hsg lớp 9 nên không biết ạ 

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm