\(\sqrt{x^2+6x+9}+\sqrt{x^2-6x+9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2014

P=/ x+3/+/3-x/ >_ /x+3+3-x/

P >_6

min P là 6

dấu bằng xảy ra

( X+3)(3-X)>_ 0

-3_<X_<3

 

24 tháng 10 2016

\(M=\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)

\(=\sqrt{x^2+2.x.3+3^2}+\sqrt{x^2-2.2x+2^2}\)

\(=\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}\)

TH1 : \(x< -3;\)có :

\(M=-\left(x+3\right)+\left[-\left(x-2\right)\right]\)

\(=-3-x+2-x\)

\(=-1-2x>-1-2.\left(-3\right)=-1+6=5\)

TH2 : \(-3\le x\le2;\)có :

\(M=\left(x+3\right)+\left[-\left(x-2\right)\right]\)

\(=x+2+2-x=4\)

TH3: \(x>2\)

\(\Rightarrow M=\left(x+3\right)+\left(x-2\right)=2x+1\ge2.2+1=5\)

\(\Rightarrow Min_M=4\)

\(\Leftrightarrow-3\le x\le2\)

Vậy ...

Tại hạ chưa học lớp 9 nên làm cách quèn :)

27 tháng 8 2015

\(\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+2\right|+\left|x-3\right|\)

\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

Dấu "=" xảy ra khi:

\(\left(x+2\right)\left(3-x\right)\ge0\)

\(\Leftrightarrow x+2\ge0\text{ và }3-x\ge0\text{ hoặc }x+2\le0\text{ và }3-x\le0\)

\(\Leftrightarrow x\ge-2\text{ và }x\le3\text{ hoặc }x\le-2\text{ và }x\ge3\left(loại\right)\)

Vậy giá trị nhỏ nhất của biểu thức là 5 tại \(-2\le x\le3\)

9 tháng 4 2017

a, A= .........(chép lại biểu thức ở đề) = |x-1| + |x+3|

Để A đạt gtnn thì

\(\left[{}\begin{matrix}\left|x-1\right|=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-1=0\\1-x=0\end{matrix}\right.\\\left[{}\begin{matrix}x-3=0\\3-x=0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy x =1 hoặc x=3

b) đặt căn x = a

viết lại B sẽ thấy lại A

9 tháng 4 2017

\(\left|x-1\right|+\left|x-3\right|=\left|1-x\right|+\left|x-3\right|\ge\left|1-x+x-3\right|=2\)

dấu = xảy ra khi \(\left(1-x\right)\left(x-3\right)\ge0\Leftrightarrow1\le x\le3\)

18 tháng 11 2015

\(A=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

    =  / x+2/  +  /  x -3/     = /x+2/ +  / 3-x /    >/   /x+2+3-x/  =5

A min = 5  khi   -2 </ x </ 3

1 tháng 10 2020

Bài 9: 

a) đk: \(x\ge0\)

Ta có: \(3+\sqrt{x}\ne5\)

\(\Leftrightarrow\sqrt{x}\ne2\)

\(\Rightarrow x\ne4\)

Vậy \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

b) \(\sqrt{x^2-6x+9}=3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

\(\Leftrightarrow\left|x-3\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)

1 tháng 10 2020

Bài 9.

a) \(3+\sqrt{x}=5\)

ĐK : x ≥ 0

<=> \(\sqrt{x}=2\)

<=> \(x=4\)( tm )

Vậy x = 4

b) \(\sqrt{x^2-6x+9}=3\)

<=> \(\sqrt{\left(x-3\right)^2}=3\)

<=> \(\left|x-3\right|=3\)

<=> \(\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)

Bài 10.

\(A=\sqrt{x^2-2x+5}\)

=> A2 = x2 - 2x + 5

          = ( x2 - 2x + 1 ) + 4

          = ( x - 1 )2 + 4 ≥ 4 ∀ x

Dấu "=" xảy ra khi x = 1

=> A2 ≥ 4

=> A ≥ 2

=> MinA = 2 <=> x = 1

b) \(B=\sqrt{\frac{x^2}{4}-\frac{x}{6}+1}\)

=> B2 = \(\frac{1}{4}x^2-\frac{1}{6}x+1\)

          = \(\left(\frac{1}{4}x^2-\frac{1}{6}x+\frac{1}{36}\right)+\frac{35}{36}\)

          = \(\left(\frac{1}{2}x-\frac{1}{6}\right)^2+\frac{35}{36}\ge\frac{35}{36}\forall x\)

Dấu "=" xảy ra khi x = 1/3

=> B2 ≥ 35/36

=> B ≥ \(\frac{\sqrt{35}}{6}\)

=> MinB = \(\frac{\sqrt{35}}{6}\)<=> x = 1/3

29 tháng 10 2017

\(a,A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}.\)

\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}.\)

\(A=\left(x-3\right)-\left(x+3\right)\)

\(b,\) Ta có : \(A=1=\left(x-3\right)-\left(x+3\right)\)

                                   \(\Leftrightarrow1=x-3-x-3\Leftrightarrow1=-6\left(ko\right)tm\)

Vậy ko có giá trị của x.

11 tháng 6 2018

mk ko biết đâu

mk mới hok lớp 5 thui

chúc bạn hok tốt nhé

kb với mk nha

25 tháng 7 2015

=\(\left|x-3\right|-\left|x+3\right|\)

*x>0

=x-3-x+3

=0

*x<0

=3-x-3+x

=0