Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\)\(\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{x-4-x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-3}{4}\)
\(b,\)Để \(P>0\Rightarrow\frac{\sqrt{x}-3}{4}>0\)
Mà \(4>0\Rightarrow\sqrt{x}-3>0\Rightarrow\sqrt{x}>3\Rightarrow x>9\)
\(c,\sqrt{P}_{min}=0\Rightarrow\frac{\sqrt{x}-3}{4}=0\)
\(\Leftrightarrow\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Rightarrow x=9\)
a, Ta có : \(x=25\Rightarrow\sqrt{x}=\sqrt{25}=5\)
\(\Rightarrow Q=\frac{5-1}{5+1}=\frac{4}{6}=\frac{2}{3}\)
b, \(P=\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}-\frac{4}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{4}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1+x-\sqrt{x}+1-4}{\sqrt{x}}=\frac{2x-2}{\sqrt{x}}\)
c, Ta có : \(P.Q.\sqrt{x}< 8\)hay \(\frac{2x-2}{\sqrt{x}}.\sqrt{x}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)< 8\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< 8\Leftrightarrow2\left(\sqrt{x}-1\right)^2< 8\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2< 4\Leftrightarrow\sqrt{x}-1< 2\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)
ĐKXĐ: \(x\ge0,x\ne9\)
a) \(P=\frac{3\sqrt{x}+2}{\sqrt{x}+1}+\frac{2\sqrt{x}+3}{\sqrt{x}-3}-\frac{3\left(3\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x-3}\right)}\)
\(=\frac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+3\left(3\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3x-9\sqrt{x}+2\sqrt{x}-6+2x+2\sqrt{x}-3\sqrt{x}-3-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{5x-17\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{5x-15\sqrt{x}-2\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(5\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{5\sqrt{x}-2}{\sqrt{x}+1}\)
b) Ta có: \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
Do đó: \(P=\frac{5\left(\sqrt{3}+1\right)-2}{\left(\sqrt{3}+1\right)+1}=\frac{5\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(5\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(\sqrt{3}+2\right)\left(2-\sqrt{3}\right)}=7\sqrt{3}-9\)
c) Ta có \(P=\frac{5\sqrt{x}-2}{\sqrt{x}+1}=\frac{5\sqrt{x}+5-7}{\sqrt{x}+1}\)
\(P=5-\frac{7}{\sqrt{x}+1}\)
Vì \(\frac{7}{\sqrt{x}+1}>0\)nên \(P\)có giá trị nhỏ nhất khi và chỉ khi \(\frac{7}{\sqrt{x}+1}\)lớn nhất
\(\Leftrightarrow\sqrt{x}+1\)nhỏ nhất \(\Leftrightarrow x=0\)
Khi đó minP=5-7=-2
\(\sqrt{P}\) xác định khi \(P\ge0\)
Do vậy \(\sqrt{P}\) đạt GTNN khi P = 0 => x = 9
\(P=\sqrt{3-x}+\sqrt{4-x}\)có tập xác định : D = [3 ; 4 ]
ta có : \(P^2=x-3+2\sqrt{\left(3-x\right)\left(4-x\right)}+4-x\)
\(=1+2\sqrt{\left(3-x\right)\left(4-x\right)}\ge1\Rightarrow P\ge1\) Dấu " = " xảy ra <=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
tại sao từ 3-x lại thành x-3 bạn