\(N=x^2+\frac{1}{y\left(x-y\right)}\)với \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)

Áp dụng ta được : 

\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)

27 tháng 4 2021

\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+\frac{1}{x^2y^2}+2\)

Áp dụng BĐT Cô-si cho 2 số không âm ta có:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

\(\frac{255}{256x^2y^2}\ge\frac{255}{256\cdot\frac{\left(x+y\right)^4}{16}}=\frac{255}{256\cdot\frac{1}{16}}=\frac{255}{16}\)

\(\Rightarrow P\ge\frac{1}{8}+\frac{255}{16}+2\ge\frac{289}{16}\) 

Đẳng thức xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

14 tháng 1 2021

tao chơi hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy tao đó

14 tháng 1 2021

Áp dụng bđt: a2 + b2 > = (a + b)2/2

Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0

<=> (a - b)> = 0 (luôn đúng với mọi a,b

Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

CM đúng <=> (a + b)2 > = 4ab

<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)

Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)

Dấu"=" xảy ra <=> x = y = 1/2

Vậy minA = 18/ <=> x = y = 1/2

2 tháng 5 2020

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{\left(x+y\right)^2}{4}}\)

\(=4+2+5=11\)

Dấu "=" xảy ra khi x = y = \(\frac{1}{2}\)

4 tháng 5 2020

số gạo còn lại là 

3/3-1/3=2/3

dáp số 2/3

23 tháng 4 2017

Đơn giản biểu thức ta được:

\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(-x\right).\left(-y\right)}{xy}=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=1+\frac{1}{xy}+\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{1}{xy}+\frac{x+y}{xy}\)

\(=1+\frac{1}{xy}+\frac{1}{xy}=1+\frac{2}{xy}\)

Ta bắt đầu tìm \(MIN:\)

Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P\ge1+2\div\frac{1}{4}=9\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=9\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(MIN_B=9\Leftrightarrow x=y=\frac{1}{2}\) 

1 tháng 5 2017

Tìm \(MAX\) cho bạn luôn:

Ta đặt: \(x=\sin^2\alpha;y=\cos^2\alpha\left(ĐK:a\ne\frac{\pi}{4}+k\pi\right)\)

Ta có: \(B=\left(1-\frac{1}{\sin^4\alpha}\right)\left(1-\frac{1}{\cos^4\alpha}\right)\)

\(=\frac{\left(\sin^2\alpha-1\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha-1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4\alpha}\)

\(=\frac{\left(\sin^2\alpha.\cos^2\alpha\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4a}\)

\(=\frac{\sin^2\alpha.\cos^2\alpha+2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{8}{\sin^22\alpha}\)

Để  \(B_{max}\Leftrightarrow\sin^22a\) nhỏ nhất \(\Rightarrow\cos^22\alpha\) tiến lên 1

\(\Rightarrow\alpha\) tiến đến 0 hoặc \(\pi\Rightarrow x\) hoặc \(y\) tiến đến 0

Vậy không tìm được \(B_{max}\)

21 tháng 4 2019

1/y thành 1/x nhé

H = x2 + 2y2 + 1/x + 24/y

H = ( x2 + 1 ) + 2 ( y2 + 4 ) + 1/x + 24/y

\(\ge\)2x + 8y + 1/x + 24/y = ( x + 1/x ) + ( 6y + 24y ) x + 2y - 9

\(\ge\)2 + 24 + 5 - 9 = 22

Dấu " = " xảy ra khi x = 1 ; y = 2