Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Áp dụng bđt svacxo :
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Vậy \(Min_S=\frac{1}{2}\)khi \(x=y=z=\frac{1}{3}\)
Bài làm:
Áp dụng bất đẳng thức Svac-xơ ta có:
\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1^2}{2.1}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{y+x}\Rightarrow x=y=z=1\)
Vậy Min(S)=1 khi \(x=y=z=1\)
Học tốt!!!!
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{x^2}{y-1}+4(y-1)\geq 2\sqrt{\frac{x^2}{y-1}.4(y-1)}=4x$
$\frac{y^2}{x-1}+4(x-1)\geq 2\sqrt{\frac{y^2}{x-1}.4(x-1)}=4y$
$\Rightarrow P+4(x-1)+4(y-1)\geq 4x+4y$
$\Rightarrow P\geq 8$
Vậy $P_{\min}=8$. Giá trị này đạt tại $x=2(y-1); y=2(x-1)$
$\Rightarrow x=y=2$
Ta có:
\(\left(x+y\right)^2\ge0\forall x,y\\ \left(x+1\right)^2\ge0\forall x\\ \left(y-2\right)^2\ge0\forall y\)
\(L=\left(x+y\right)^2+\left(x+1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
Dấu "=" xảy: \(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
=> L không có GTNN