\(\dfrac{x}{2}+\dfrac{2}{x-1}\) , ∀x>1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 11 2018

\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{\left(x-1\right)}{2}.\dfrac{2}{\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)

\(\Rightarrow f\left(x\right)_{min}=\dfrac{5}{2}\) khi \(\dfrac{x-1}{2}=\dfrac{2}{x-1}\Rightarrow x=3\)

2 tháng 12 2019

blabla..

17 tháng 5 2017

\(y=\dfrac{4\left(x+1-1\right)}{x}+\dfrac{9\left(x+1-x\right)}{1-x}\)

\(=4+9+\dfrac{4\left(1-x\right)}{x}+9\dfrac{x}{1-x}\ge13+2\sqrt{4\dfrac{\left(1-x\right)}{x}.9\dfrac{x}{1-x}}=25\)

\(\Rightarrow y\ge25,\forall x\in\left(0;1\right)\)

Đẳng thức \(y=25\) xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}\dfrac{4\left(1-x\right)}{x}=\dfrac{9x}{1-x}=6\\x\in\left(0;1\right)\end{matrix}\right.\)

Hay \(x=\dfrac{2}{5}\)

Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đặt tại \(x=\dfrac{2}{5}\)

31 tháng 1 2018

Đoạn đầu bạn đã biến đổi nhầm một chút nhé:

\(y=\dfrac{4}{x}+\dfrac{9}{1-x}=\dfrac{4\left(x+1-x\right)}{x}+\dfrac{9\left(1-x+x\right)}{1-x}=4+9+4.\dfrac{1-x}{x}+9.\dfrac{x}{1-x}\)

28 tháng 12 2020

ta có: \(f_{\left(x\right)}=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)

AD cô-si ta được \(\frac{x-1}{2}+\frac{2}{x-1}\ge2\)( dấu "=" xảy ra khi x=3)

=> \(f_{\left(x\right)}\ge2+\frac{1}{2}=\frac{5}{2}\)

=> Min f(x) =5/2 tại x =3