Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021
= |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021
= |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021
= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021
Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)
=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)
Khi (x - 2020)(x2 - 16) = 0
=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)
Khi 2(x - 4)2 = 0
=> x - 4 = 0
=> x = 4 (2)
Từ (1) (2) => x = 4
Vậy Min M = 2021 <=> x = 4
a,Ta có:
\(\left|4x-\frac{7}{3}\right|\ge0\Rightarrow\left|4x-\frac{7}{3}\right|+2004\ge2004\)
Dấu "=" xảy ra \(\Leftrightarrow\left|4x-\frac{7}{3}\right|=0\Leftrightarrow4x-\frac{7}{3}=0\Leftrightarrow4x=\frac{7}{3}\Leftrightarrow x=\frac{7}{12}\)
b,Ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\ge x-1+x-2+3-x+4-x=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Câu C sai đề
A=\(\left|4x-\frac{7}{3}\right|+2004\ge2004\)
Dấu "=" xảy ra khi: x=7/12
Vậy GTNN của A là 2004 tại x=7/12
Ta có: |2x - 5| \(\ge\)0 \(\forall\)x
=> |2x - 5| + 1,(3) \(\ge\)1,(3)
hay |2x - 5| + 4/3 \(\ge\)4/3
Dấu "=" xảy ra <=> 2x - 5 = 0 <=> x = 5/2
Vậy Min F = 4/3 <=> x = 5/2
Ta có: G = |x - 3| + |x + 3/2|
G = |3 - x| + |x + 3/2| \(\ge\)|3 - x + x + 3/2| = |3/2| = 3/2
Dấu "=" xảy ra <=> (3 - x)(x + 3/2) \(\ge\)0
<=> -3/2 \(\le\)x \(\le\)3
Vậy MinG = 3/2 <=> -3/2 \(\le\)x \(\le\)3
Làm lại cho Edogawa Conan
\(G=\left|x-3\right|+\left|x+\frac{3}{2}\right|\)
\(G=\left|3-x\right|+\left|x+\frac{3}{2}\right|\ge\left|\left(3-x\right)+\left(x+\frac{3}{2}\right)\right|\)
\(=\frac{9}{2}\)
Vậy \(G_{min}=\frac{9}{2}\Leftrightarrow\left(3-x\right)\left(x+\frac{3}{2}\right)\ge0\)
\(Th1:\hept{\begin{cases}3-x\ge0\\x+\frac{3}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge\frac{3}{2}\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le2\)
\(Th2:\hept{\begin{cases}3-x\le0\\x+\frac{3}{2}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\left(L\right)\)
\(B=1,5+\left|2-x\right|\)
Có: \(\left|2-x\right|\ge0\)
\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)
Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)
Vậy: \(Min_A=1,5\)tại \(x=2\)
a) Ta có \(\left(x-2\right)^2\ge0\forall x\)
=> Min A = 0
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy Min A = 0 <=> x = 2
b) Ta có \(\left(2x+1\right)^4\ge0\forall x\Rightarrow\left(2x+1\right)^4-98\ge-98\)
=> Min B = -98
Dấu "=" xảy ra <=> 2x + 1= 0 <=> x = -0,5
Vậy Min B = -98 <=> x = -0,5
c) Ta có C = |x - 10| + |x - 11|
= |x - 10| + |11 - x| \(\ge\left|x-10+11-x\right|=\left|1\right|=1\)
=> Min C = 1
Dấu "=" xảy ra <=> \(\left(x-10\right)\left(11-x\right)\ge0\)
TH1 : \(\hept{\begin{cases}x-10\ge0\\11-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge10\\x\le11\end{cases}}\Leftrightarrow10\le x\le11\)
TH2 : \(\hept{\begin{cases}x-10\le0\\11-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le10\\x\ge11\end{cases}}\Leftrightarrow x\in\varnothing\)
Vậy Min C = 1 <=> \(10\le x\le11\)
Có: \(|x-1|\ge0\)
\(|x-2|\ge0\)
.................
\(|x-2019|\ge0\)
=> \(A\ge0\)
Vậy giá trị nhỏ nhất của A là 0
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-1|+|x-2021|=|x-1|+|2021-x|\geq |x-1+2021-x|=2020$
$|x-2|+|x-2020|=|x-2|+|2020-x|\geq |x-2+2020-x|=2018$
..............
$|x-1010|+|x-1012|\geq |x-1010+1012-x|=2$
Cộng theo vế thu được:
$G\geq 2020+2018+2016+...+2+|x-1011|$
$G\geq 1021110+|x-1011|\geq 1021110$
Vậy $G_{\min}=1021110$
Giá trị này đạt tại:
\(\left\{\begin{matrix} (x-1)(2021-x)\geq 0\\ (x-2)(2020-x)\geq 0\\ .....\\ (x-1010)(1012-x)\geq 0\\ x-1011=0\end{matrix}\right.\Leftrightarrow x=1011\)