\(F=x^4-4xy\left(x^2-4y\right)+x^2-6x+10\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được

16 tháng 5 2018

Ta có : \(f\left(x\right)=x^2+6x+15=\left(x+3\right)^2+6\ge6\)

Vậy Min = 6 <=> x = - 3

Nhận thấy , giá trị của x càng tăng thì giá trị của f(x) cũng tăng theo 

Vậy f(x) không có giá trị lớn nhất .

16 tháng 5 2018

Có: \(f\left(x\right)=x^2+6x+15=x^2+2.3x+3^2+6=\left(x+3\right)^2+6\)

Có: \(\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+3\right)^2+6\ge6\forall x\)

\(\Rightarrow\)GTNN của f(x) là 6 khi: ( x+3 )2 = 0

                                                     x+3 = 0

                                                          x=-3

Vậy GTNN của f(x) là 6 khi x=-3

Chúc bạn học tốt!

28 tháng 6 2017

a) \(x^2-6x+11=x^2-2.3.x+3^3+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow\) min = \(2\) khi \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

b) \(x^2-20x+101\Leftrightarrow x^2-2.10.x+10^2+1\Leftrightarrow\left(x-10\right)^2+1\ge1\)

\(\Rightarrow\) min \(=1\) khi \(\left(x-10\right)^2=0\Leftrightarrow x-10=0\Leftrightarrow x=10\)

28 tháng 6 2017

d) \(x^2-2x+y^2+4y+8\) \(\Leftrightarrow\) \(x^2-2x+1^2+y^2+4y+2^2+3\)

\(\Leftrightarrow\) \(\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)

\(\Rightarrow\) min = \(3\) khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

e) \(x^2-4x+y^2-8y+6\) \(\Leftrightarrow\) \(x^2-4x+2^2+y^2-8y+4^2-14\)

\(\Leftrightarrow\) \(\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

vậy min = \(-14\) khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-2=0\\y-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

28 tháng 8 2018

mk gợi ý, phần còn lại tự làm 

a)  \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4\)

b) \(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

c)  \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

d)  \(D=x^2-2x+y^2-4y+7=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

e)  \(E=x^2-4xy+5y^2+10x-22y+28=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

28 tháng 8 2018

a) A = x2 + 2x + 5 

    = x2 + 2x + 1 + 4

    = ( x + 1 )2  + 4

Nhận xét :

( x + 1 )2 > 0 với mọi x 

=> ( x + 1 )2 + 4 > 4 

=> A > 4 

=> A min = 4

Dấu " = " xảy ra khi : ( x + 1 )2  =  0

                                  => x + 1 = 0

                                  => x = - 1

Vậy A min = 4 khi x = - 1

b) B = 4x2 + 4x + 11

= ( 2x )2 + 4x + 1 + 10

= ( 2x + 1 )2 + 10

Nhận xét :

( 2x + 1 )2 > 0 với mọi x

=> ( 2x + 1 )2 + 10 > 10

=> B  >  10

=> B min = 10

Dấu " = " xảy ra khi : ( 2x + 1 )2 = 0

                               => 2x + 1 = 0

                                => x = \(\frac{-1}{2}\)

Vậy Bmin = 10 khi x = \(\frac{-1}{2}\)

c) C = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

       = [ ( x - 1 ) ( x + 6 ) ] [ ( x + 2 ) ( x + 3 ) ]

        = ( x2 + 5x - 6 ) (  x2 + 5x + 6 )

       = ( x2 + 5x ) 2 - 62

        = ( x2  + 5x )2 - 36

Nhận xét : 

( x2 + 5x )2 > 0 với mọi x

=> ( x2 + 5x )2 - 36 > - 36

=> C > - 36

=> C min = - 36

Dấu " = " xảy ra khi : ( x2 + 5x )2 = 0

                               => x2 + 5x = 0

                               => x ( x + 5 ) = 0

                               => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                              => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy C min = - 36 khi x = 0 hoặc x = - 5

d) D = x2 - 2x + y2 - 4y + 7

        = ( x2 - 2x + 1 ) + ( y2 - 4x + 4 ) + 2

        = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét :

( x - 1 )2 > 0 với mọi x

( y - 2 )2 > 0 với mọi y

=> ( x - 1 )2 + ( y - 2 )2 > 0 

=> ( x - 1 )2 + ( y - 2 )2 + 2  >  2

=> D > 2

=> D min = 2

Dấu " = " xảy ra khi :  \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\) 

                               => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                               => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy D min = 2 khi x = 1 và y = 2

24 tháng 6 2017

Phân thức đại số

2 tháng 9 2018

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

2 tháng 9 2018

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)