![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0
=> (x + 1)2 + (y - 2)2 + 9 \(\ge\)9
Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0 => x = -1 và y = 2
Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2)2 + 9 là 9 khi x = -1 và y = 2
\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)
Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .
Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có (x+1)^2\(\ge0với\forall x\) (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)
=>B=(x+1)^2+(y+3)^2+1\(\ge1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta thấy: (x-1)^2 >hoặc =0
(y+3)^2 >hoặc = 0
suy ra (x-1)^2+ (y+3)^2 > hoac = 0
suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5
Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5
Vậy M đạt giá trị nhỏ nhất =5
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có a=3-x(1-2x)-(x-1)(x+2)=3-x+2x^2 -x^2-x+2=x^2-2x+5=(x^2 -2x+1)+4=(x-1)2+4< hoặc =4 <=>gtnn của a là 4 khi x-1=0 =>x=1
\(E=\left(x-1\right)^2+\left(y+2\right)^2\ge0+0=0\)
Dấu "=" xảy ra <=> x=1 và y=-2
Vậy .............