\(\frac{5}{x^2+6x+10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Ta có: \(D=\frac{5}{x^2+6x+10}=\frac{5}{\left(x+3\right)^2+1}\)

\(\Rightarrow D\le\frac{5}{1}=5\)

Dấu "=" xảy ra khi \(\left(\:\:x+3\right)^2=0\Rightarrow x=-3\)

26 tháng 1 2020

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

10 tháng 5 2019

Ta có \(P\left(x^2+2\right)=x^2+6x-5\)

=> \(\left(P-1\right)x^2-6x+2P+5=0\)

=> \(\Delta'=9-\left(2P+5\right)\left(P-1\right)\ge0\)

=> \(-2P^2-3P+14\ge0\)

=> \(-\frac{7}{2}\le P\le2\)

\(MinP=-\frac{7}{2}\)khi \(x=-\frac{2}{3}\)

\(MaxP=2\)khi \(x=3\)

10 tháng 5 2019

Chắc ko vậy???

25 tháng 3 2020

C = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\forall x\)

Dấu "=" xảy ra <=> 3x - 1 = 0 =<=> x = 1/3

Vậy MinC = -1/2 khi x = 1/3

M = \(\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\forall x\)

Dấu "=" xảy ra <=> x + 1/2= 0 <=> x = -1/2

Vậy MaxM = 6/5 khi x = -1/2

N = x  - x2 = -(x2 - x + 1/4) + 1/4 = -(x - 1/2)2 + 1/4 \(\le\)1/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy MaxN = 1/4 khi x = 1/2

25 tháng 3 2020

Edogawa Conan giúp em luôn bài giá trị lớn nhất luôn được không ạ?

18 tháng 3 2018

\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)

\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)

20 tháng 3 2018

dòng thứ 2 ko hiểu

6 tháng 8 2021

Trả lời:

Ta có: \(x^2-6x+10=x^2-2.x.3+9+1=\left(x-3\right)^2+1\)

Lại có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Leftrightarrow\) \(\left(x-3\right)^2+1\ge1\forall x\)

\(\Leftrightarrow\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTLN của A = 5 khi x = 3

Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

Để \(\frac{3x-2}{x^2-9}=0\)

\(\Rightarrow3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

13 tháng 8 2016

Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)

\(3x=2\)

\(x=\frac{2}{3}\)