Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=1/2
\(D=25x^2-10xy+y^2+2y^2+4y+2-1\)
\(=\left(5x-y\right)^2+2\left(y+1\right)^2-1>=-1\)
Dấu '=' xảy ra khi y=-1 và x=1/5
1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1
GTNN D = 5/6
dài quá, nản quá
Lời giải:
a) Biểu thức không phân tích được thành nhân tử
b)
\(4x^2-12+8=4x^2-4=4(x^2-1^2)=4(x-1)(x+1)\)
c)
\(9x^2-6xy-3y^2=3(3x^2-2xy-y^2)=3[(3x^2-3xy)+(xy-y^2)]\)
\(=3[3x(x-y)+y(x-y)]=3(x-y)(3x+y)\)
d)
\(25x^2-10xy-15y^2=(5x)^2-2.5x.y+y^2-16y^2\)
\(=(5x-y)^2-(4y)^2=(5x-y-4y)(5x-y+4y)\)
\(=(5x-5y)(5x+3y)=5(x-y)(5x+3y)\)
a/ giá trị nhỏ nhất của A là 2
b/ giá trị lớn nhất của B là 51
tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm
Ta có: x + y = 1
<=> (x + y)3 = 1
<=> x3 + y3 + 3xy(x + y) = 1
<=> x3 + y3 + 3xy = 1 (do x + y = 1)
<=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x = y = 12
a,\(15x^3y^4-20x^4y^3+30x^3y^3\)
=\(5x^3y^3\left(3y-4x+6\right)\)
b,\(x^2+10xy+25y^2\)
=\(x^2+2.x.5.y+\left(5y\right)^2\)
=\(\left(x+5y\right)^2\)
c,\(x^2-2xy+y^2-9z^2\)
=\(\left(x^2-2xy+y^2\right)-\left(3z\right)^2\)
=\(\left(x-y\right)^2-\left(3z\right)^2\)
=\(\left(x-y+3z\right)\left(x-y-3z\right)\)
chúc bn hok tốt
\(C=x^2-x+1=x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Nên GTNN của C là \(\frac{3}{4}\) đặt được khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(D=25x^2+3y^2-10xy+4y+1\)
\(=\left(5x\right)^2-2.5x.y+y^2+2y^2+4y+2-1\)
\(=\left(5x-y\right)^2+2\left(y+1\right)^2-1\ge-1\)
Nên GTNN của D là - 1 đạt được khi \(\hept{\begin{cases}y+1=0\\5x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\y=5x\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-\frac{1}{5}\end{cases}}\)