Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-3x\left(x+3\right)-7\)
\(=-3x^2-9x-7\)
\(=-\left(\sqrt{3}x\right)^2-2\sqrt{3}x.\frac{9}{2\sqrt{3}}-\frac{81}{12}+\frac{81}{12}-7\)
\(=-\left(\sqrt{3}x+\frac{9}{2\sqrt{3}}\right)^2-\frac{1}{4}\)
vì \(-\left(3x+\frac{9}{2\sqrt{3}}\right)^2\le0\)
Nên\(-\left(3x+\frac{9}{2\sqrt{3}}\right)-\frac{1}{4}\le-\frac{1}{4}\)
Vậy GTNN của đa thức trên là: \(-\frac{1}{4}\)
Đặt \(A=x^2-3x\)
\(A=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)
\(A=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-\frac{9}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy \(A_{Min}=-\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)
Đặt \(B=-x^2-2x\)
\(-B=x^2+2x\)
\(-B=\left(x^2+2x+1\right)-1\)
\(-B=\left(x+1\right)^2-1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge-1\Leftrightarrow B\le1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(B_{Max}=1\Leftrightarrow x=-1\)
\(\dfrac{3x^2+6x+15}{x^2+2x+3}=\dfrac{3\left(x^2+2x+3\right)+6}{x^2+2x+3}\\ =3+\dfrac{6}{x ^2+2x+3}\)
Nhận thấy : \(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)
\(=>\dfrac{6}{x^2+2x+3}\le\dfrac{6}{2}=3\)
\(=>3+\dfrac{6}{x^2+2x+3}\le3+3=6\\ =>\dfrac{3x^2+6x+15}{x^2+2x+3}\le6\)
Dấu = xảy ra khi : x+1=0 hay x=-1
Vậy GTLN của đa thức là : 6 tại x = -1
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
D=-3x(x+3)-7
D=-3x² - 9x - 7
D=3x² - 3.2.x.3/2-27/4-1/4
D=3.(x²-2x.3/2-9/4)-1/4
D=3.(x-3/2)²-1/4 < hoặc = - 1/4 vì -3.(x-3/2)²< hoặc = 0
Dấu = xảy ra khi:
X-3/2=0
X=3/2
Vậy GTLN của D là-1/4 tại x=3/2
Tích nha
Cậu xem ở phần Câu hỏi tương tự nhé.