
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Ta có : C = (x + 1).(x + 2).(x + 3).(x + 4)
=> C = [(x + 1).(x + 4)].[(x + 2).(x + 3)]
=> C = [x2 + 5x + 4] . [x2 + 5x + 6]
Đặt t = x2 + 5x + 5
Khi đó t - 1 = x2 + 5x + 4 , t + 1 = x2 + 5x + 6
Nên C = (t - 1)(t + 1) = t2 - 1 = (x2 + 5x + 5)2 - 1
Mà (x2 + 5x + 5)2 \(\ge0\forall x\)
Do đó (x2 + 5x + 5)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của C là :

a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)

2x2-5x+4
<=> 2(x2-5/2x+2)<=>2(x2-2x5/4+25/16-25/16+32/16)<=>2[(x-5/4)2+7/16]<=>2(x-5/4)2+7/8
vì (x-5/4)2 >hoặc=0 nên 2(x-5/4)2 >hoặc=0 vậy 2(x-5/4)2+7/8 >hoặc=7/8
dấu bằng XRK 2(x-5/4)2=0<=>x-5/4=0<=>x=5/4
chúc bạn học giỏi kết bạn nha
\(2x^2-5x+4\)
=\(\left(\sqrt{2}x\right)^2-2\sqrt{2}.\frac{5}{2\sqrt{2}}x+\left(\frac{5}{2\sqrt{2}}\right)^2-\left(\frac{5}{2\sqrt{2}}\right)^2+4\)
= \(\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2+\frac{7}{8}\)
Mà \(\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2\ge0\)
=> \(\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)
Vậy GTNN của bt là \(\frac{7}{8}\)khi x= \(\frac{5}{4}\)
GTNN của D là 10 nha
Ta có \(\hept{\begin{cases}\left(5x-3\right)^2\ge0\\4\left|5x-3\right|\ge0\end{cases}\forall x}\)
\(\Rightarrow\left(5x-3\right)^2-4\left|5x-3\right|+14\ge14\)
\(\Rightarrow D\ge14\)
Dấu "=" xảy ra <=> 5x-3=0 <=> x=3/5