K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

Cái này là GTLN nha

Do \(-\left|3x-\dfrac{1}{4}\right|\le0\)

\(\Rightarrow D=-\left|3x-\dfrac{1}{3}\right|-\dfrac{1}{2}\le-\dfrac{1}{2}\)

\(maxD=-\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{12}\)

ta có:

\(-\left|3x-\dfrac{1}{4}\right|\) ≤ 0

=> \(-\left|3x-\dfrac{1}{4}\right|\)≤-1/2

GTNN:D= -1/2 khi 3x-1/4=0

                              3x=1/4

                                  x=1/12

 

3 tháng 10 2020

Ta có: \(A=2,5+\left|x-3\right|\ge2,5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x-3\right|=0\)

\(\Leftrightarrow x-3=0\Rightarrow x=3\)

Vậy Min(A) = 2,5 khi x = 3

3 tháng 10 2020

A = 2,5 + | x - 3 |

| x - 3 | ≥ 0 ∀ x => 2, 5 + | x - 3 | ≥ 2, 5

Dấu "=" xảy ra khi x = 3

=> MinA = 2,5 <=> x = 3

B = -2, 5 - | 3x - 1 |

-| 3x - 1 | ≤ 0 ∀ x => -2,5 - | 3x - 1 | ≤ -2, 5

Dấu "=" xảy ra khi x = 1/3

=> MaxB = -2, 5 <=> x = 1/3

C = -| x - 4 | + 2

-| x - 4 | ≤ 0 ∀ x => -| x - 4 | + 2 ≤ 2

Dấu "=" xảy ra khi x = 4

=> MaxC = 2 <=> x = 4

D = | 4, 2 - x | + 1

| 4, 2 - x | ≥ 0 ∀ x => | 4, 2 - x | + 1 ≥ 1

Dấu "=" xảy ra khi x = 4, 2

=> MinD = 1 <=> x = 4, 2

7 tháng 9 2016

min=-1 khi x=2

max=5 khi x=-6

7 tháng 9 2016

cho cách giải luôn đi kê hà my

20 tháng 11 2016

Với mọi x, ta có:

|3x - 1| lớn hơn hoặc bằng 0 suy ra 2|3x - 1| lớn hơn hoặc bằng 0

=> 2|3x - 1| - 4 lớn hơn hoặc bằng -4

Có: A = -4 chỉ khi 3x - 1 = 0

=> A = -4 chỉ khi x = 1/3

Vậy A đạt giá trị nhỏ nhất khi x = 1/3

20 tháng 11 2016

GTNN A = -4

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

24 tháng 10 2017

mk ko bt 123

15 tháng 2 2018

\(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2\)

\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

15 tháng 2 2018

giải tiếp : 

Vì \(x^2+x+1=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

                            \(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên  \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu "=" xảy ra khi và chỉ khi  \(x=-\frac{1}{2}\)

Có \(\left|3x+1\right|\ge0\)

\(2.\left|3x+1\right|\ge0\)

\(2.\left|3x+1\right|-1\ge-1\)

= > GTNN của C = -1 

\(\left|x-1\right|+\left|y-3\right|\ge0\)

\(\left|x-1\right|+\left|y-3\right|+2\ge2\)

\(D\ge2\)

Vậy GTNN của D = 2