\(|x-2|+|x+28|+|x-60|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

a, A =I x - 3I +10

\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc  bằng 0 vs mọi x)

Dấu ''='' xảy ra khi x-3=0

                       <=>x = 3

Vậy giá trị nhỏ nhất của A là 10 khi x = 3

b, \(B=-7+\left(x-1\right)^2\)

\(\Rightarrow B\ge-7\forall x\)

Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

Vậy giá trị nhỏ nhất của B là -7 khi x=1

c, C= -3 - I x -2I

\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2 

Vây giá trị lớn nhất của C là - 3 khi x = 2.

d, \(D=15-\left(x-2\right)^2\)

\(\Rightarrow D\le15\)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2

Vây giá trị lớn nhất của D là 15 khi x = 2

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

15 tháng 5 2016

để A\(\in\)Z

=>5 chia hết x-2

=>x-2\(\in\){1,-1,5,-5}

=>x\(\in\){3,1,7,-3}

\(C=\frac{3x-19}{x-5}=\frac{3\left(x-5\right)-4}{x-5}=\frac{3\left(x-5\right)}{x-5}-\frac{4}{x-5}\in Z\)

=>4 chia hết x-5

=>x-5\(\in\){1,-1,2,-2,4,-4}

=>x\(\in\){6,4,7,3,9,1}

B tương tự nhé

16 tháng 5 2016

bạn làm sai rồi

giá trị nhỏ nhất lớn nhất mà chưa học à

30 tháng 7 2018


a, Thay x = -2017 vào biểu thức, ta đc
    A=|-2017 + 2018| - 107
    A=|1| - 107
    A=1 - 107
    A= -106
Vậy A = -106
b, Ta có:
    |x + 2018| - 107 = |-107|
    |x + 2018| - 107 = 107
    |x + 2018| = 107 + 107
    |x + 2018| = 214
Suy ra x + 2018 = 214 hoặc x + 2018 = -214
--Nếu  x + 2018 = 214
           x = 214 - 2018
           x = -1804
--Nếu  x + 2018 = -214
           x = -214 - 2018
           x = -2232
Vậy x = -1804; x = -2232
Chúc bạn học tốt

11 tháng 3 2018

\(\frac{5}{x-2}\)                                                                                                                                                                                                            =) X x 5 = 2 x 5

=) X x 5 = 10

=) X       = 10 : 5

=) X       =       2

Vậy x = 2

11 tháng 3 2018

+, Nếu x < 2 => x-2 < 0 => 5/x-2 < 0

+, Nếu x > 2 => x-2 > 0 => 5/x-2 > 0

=> để C = 5/x-2 Min thì x < 2

Mà x thuộc Z => x < = 1

=> x-2 < = -1

=> C = 5/x-2 >= 5/(-1) = -5

Dấu "=" xảy ra <=> x=-1

Vậy .........

Tk mk nha

19 tháng 8 2017

a) \(C=\frac{5}{x-2}\)

=> x-2 thuộc Ư(5) = {-1,-5,1,5}

Ta có bảng :

x-2-1-515
x1-337

Vậy x = {-3,1,3,7}

b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)

=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}

Ta có bảng :

x-4-1-3-9139
x31-55713

Vậy x = {-5,1,3,5,7,13}

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2

27 tháng 1 2019

a, Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2-3\ge-3\forall x\)

Hay: \(A\ge3\forall x\)

Vậy: Min A = 3 tại \(\left(x-1\right)^2=0\Rightarrow x=1\)

b,Ta có: \(\left(x-2\right)^2\ge0\forall x\)

=> \(4+\left(x-2\right)^2\ge4\forall x\)

Hay: \(B\ge4\forall x\)

Vậy: Min B = 4 tại \(\left(x-2\right)^2=0\Rightarrow x=2\)

=.= hk tốt!!

27 tháng 1 2019

\(\text{a) }\left(x-1\right)^2-3\)

\(\text{Vì }\left(x-1\right)^2\ge0\text{ }\forall x\)

\(\Rightarrow A=\left(x-1\right)^2-3\ge-3\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left(x-1\right)^2=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

\(\text{Vậy Min}_A=-3\Leftrightarrow x=1\)

\(\text{b) }B=4+\left(x-2\right)^2\)

\(\text{Vì }\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=4+\left(x-2\right)^2\ge4\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left(x-2\right)^2=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

\(\text{Vậy Min}_B=4\Leftrightarrow x=2\)