K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

a, B=2.(x+1)2+17

Vì (x+1)2 >= 0 Với mọi x

<=> 2.(x+1)2 >= 0

<=> 2.(x+1)2 >= 0 +17

<=> 2.(x+1)2 >=  17

Vậy GTNN là 17 

b, C ; D tương tự 

E= 10 - | x - 8 |

Vì | x-8 | >= 0 Với mọi x

<=> 10 - | x-8 | =< 10-0

<=>  10 - | x-8 | =< 10

Vậy GTLN là 10 

12 tháng 8 2018

a,B= 2. ( x+1)2 +17 >=17 với mọi x

Dấu bằng xảy ra khi ( x+1)2=0

                           => x +1 =0

                           => x= -1

Vậy B đạt GTNN bằng 17 <=> x=-1

27 tháng 3 2020

a) Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+1\right)^2-3\ge-3\)

Dấu " = " xảy ra khi 

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy \(x=-1\)khi \(GTNN=-3\)

B:C: tương tự

d) Ta có: \(\left(2x-1\right)^{18}\ge0\forall x\)

              \(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow D=\left(2x-1\right)^{18}+\left(y+2\right)^2+7\ge7\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^{18}=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)

Vậy \(x=\frac{1}{2};y=-2\)khi \(GTNN=7\)

e) \(\left|-2x+6\right|\ge0\)

\(\Rightarrow E=\left|-2x+6\right|+12\ge12\)

Dấu " = " xảy ra khi \(\left|-2x+6\right|=0\Rightarrow-2x=-6\Rightarrow x=3\)

Vậy x = 3 khi đạt GTNN = 12

F ; G tương tự

hok tốt!!

27 tháng 3 2020

+) A=(x+1)2 - 3  

Vì  (x+1)2 \(\ge\)0 nên (x+1)2 - 3 \(\ge\) - 3 .Dấu "=" xảy ra \(\Leftrightarrow\)(x+1)2 = 0   \(\Leftrightarrow\)x = - 1

Vậy min A = - 3 khi x = -1

+) B=(2x-5)20 + 9  

Vì (2x-5)20 \(\ge\)0 nên (2x-5)20+9\(\ge\)9.Dấu "=" xảy ra \(\Leftrightarrow\)(2x - 5)20=0    \(\Leftrightarrow\)x=\(\frac{5}{2}\)

Vậy min B=9 khi x=\(\frac{5}{2}\)

Những phần khác cũng làm tương tự :

+) minC= - 5 khi x=\(\frac{4}{3}\)

+) minD= 7 khi x=\(\frac{1}{2}\)và y= - 2

+) minE=12 khi x=3

+) min F = -17 khi x=5

+) min G = -12 khi x= - 4

29 tháng 8 2016

Ta có: 2x2 \(\ge\)0 với mọi x

=>2x2-15 \(\ge\)-15

Dấu "=" xảy ra khi 2x2=0=>x=2

Vậy Min 2x2-15 =15 khi x=0

12 tháng 1 2017

a) 0

b)-3

c)-1

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

6 tháng 2 2021

a) \(A=2x^2+1\)

Vì \(x^2\ge0\)\(\forall x\)\(\Rightarrow2x^2\ge0\)\(\forall x\)

\(\Rightarrow2x^2+1\ge1\)\(\forall x\)

hay \(A\ge1\)

Dấu " = " xảy ra \(\Leftrightarrow x=0\)

Vậy \(minA=1\)\(\Leftrightarrow x=0\)

b) \(B=-3x^2-1\)

Vì \(x^2\ge0\forall x\)\(\Rightarrow-3x^2\le0\forall x\)

\(\Rightarrow-3x^2-1\le-1\forall x\)

hay \(B\le-1\)

Dấu " = " xảy ra \(\Leftrightarrow x=0\)

Vậy \(maxB=-1\Leftrightarrow x=0\)

c) Ta có: \(C=\left|-3x^2\right|\ge0\)( tính chất của dấu giá trị tuyệt đối )

Dấu " = " xảy ra \(\Leftrightarrow-3x^2=0\)\(\Leftrightarrow x=0\)

Vậy \(minC=0\Leftrightarrow x=0\)

18 tháng 4 2020

a,Ta thấy \(x^2\ge0\) \(\left(\forall x\right)\)

         \(\Rightarrow x^2+2015\ge2015\)

Dấu "=" xảy ra   \(\Leftrightarrow x^2=0\)\(\Rightarrow x=0\)

Vậy Min \(x^2+2015=2015\)\(\Leftrightarrow x=0\)

b, Ta thấy \(\left(1-2x\right)^2\ge0\)\(\left(\forall x\right)\)

      \(\Rightarrow\left(1-2x\right)^2-12\ge-12\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\left(1-2x\right)^2=0\)\(\Rightarrow1-2x=0\)\(\Rightarrow2x=0\Rightarrow x=0\)

Vậy Min \(\left(1-2x\right)^2-12=12\Leftrightarrow x=0\)