Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, B=2.(x+1)2+17
Vì (x+1)2 >= 0 Với mọi x
<=> 2.(x+1)2 >= 0
<=> 2.(x+1)2 >= 0 +17
<=> 2.(x+1)2 >= 17
Vậy GTNN là 17
b, C ; D tương tự
E= 10 - | x - 8 |
Vì | x-8 | >= 0 Với mọi x
<=> 10 - | x-8 | =< 10-0
<=> 10 - | x-8 | =< 10
Vậy GTLN là 10
a) Ta có : A = - 15 - |7 - x| = -(15 + |7 - x|)
vì \(\left|7-x\right|\ge0\forall x\Rightarrow15+\left|7-x\right|\ge15\Rightarrow-\left(15+\left|7-x\right|\right)\le-15\)
Dấu"=" xảy ra <=> 7 - x = 0
=> x = 7
Vậy GTLN của A là - 15 khi x = 7
b) Ta có : \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0}\)
=> \(\left|x+2,5\right|+\left(y-1\right)^4-6\ge-6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}}\)
Vậy GTNN của B là - 6 khi \(\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
a) Vì \(\left|7-x\right|\ge0\forall x\)\(\Rightarrow-15-\left|7-x\right|\le-15\forall x\)
hay \(A\le-15\)
Dấu " = " xảy ra \(\Leftrightarrow7-x=0\)\(\Leftrightarrow x=7\)
Vậy \(maxA=-15\Leftrightarrow x=7\)
b) Vì \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}}\)\(\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0\forall x,y\)
\(\Rightarrow\left|x+2,5\right|+\left|y-1\right|^4-6\ge-6\forall x,y\)
hay \(B\ge-6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
Vậy \(minB=-6\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
a) A=(x-1/2)^2+3/4
Vì (x-1/2)^2>=0 với mọi x
=>(x-1/2)^2+3/4>=3/4 với mọi x.
Dấu "=" xảy ra <=>x-1/2=0<=>x=1/2
Vậy Amin=3/4<=>x=1/2
Ta có : (x - \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (x - \(\frac{1}{2}\))2 + \(\frac{3}{4}\)\(\ge\frac{3}{4}\forall x\)
Vậy GTNN của (x - \(\frac{1}{2}\))2 + \(\frac{3}{4}\)là \(\frac{3}{4}\) khi x =\(\frac{1}{2}\)
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
\(A=\left(x+\frac{4}{7}\right)^{24}+\left(-\frac{1}{2}\right)\)
\(\text{Vì }\left(x+\frac{4}{7}\right)^2\ge0\)
\(\text{nên }\left(x+\frac{4}{7}\right)^{24}+\left(-\frac{1}{2}\right)\ge-\frac{1}{2}\)
\(\text{Hay }A\ge-\frac{1}{2}\)
\(\text{Vậy }GTNN_A=-\frac{1}{2}\text{,dấu bằng xảy ra khi x = }-\frac{4}{7}\)
A=(x+4/7)24+(-1/2)
Vì (x+4/7)2_> 0
nên (x+4/7)24+(-1/2)_> -1/2
Hay A_> -1/2
Vật GTNN =-1/2, dấu = xảy ra khi x= -4/7
Các bạn tk cho Phát nha, tại mk làm sau, vs bài cx ik chang,