Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2-2\ge-2\)
Dấu "=" xảy ra khi: \(x=0\)
\(B=\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\ge-\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(x=-\dfrac{1}{3}\)
\(C=\dfrac{\left|x\right|+2017}{2018}\ge\dfrac{2017}{2018}\)
Dấu "=" xảy ra khi: \(x=0\)
\(D=3-\left(x+1\right)^2\le3\)
Dấu "=" xảy ra khi: \(x=-1\)
\(E-\left|0,1+x\right|-1,9\le-1,9\)
Dấu "=" xảy ra khi: \(x=-0,1\)
\(F=\dfrac{1}{\left|x\right|+2017}\le\dfrac{1}{2017}\)
Dấu "=" xảy ra khi: \(x=0\)
Bài 1:
a)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)
\(\Leftrightarrow |x+\frac{4}{15}|-3,75=-2,15\)
\(\Leftrightarrow |x+\frac{4}{15}|=-2,15+3,75=\frac{8}{5}\)
\(\Rightarrow \left[\begin{matrix} x+\frac{4}{15}=\frac{8}{5}\\ x+\frac{4}{15}=-\frac{8}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{3}\\ x=\frac{-28}{15}\end{matrix}\right.\)
b )
\(|\frac{5}{3}x|=|-\frac{1}{6}|=\frac{1}{6}\)
\(\Rightarrow \left[\begin{matrix} \frac{5}{3}x=\frac{1}{6}\\ \frac{5}{3}x=-\frac{1}{6}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{10}\\ x=-\frac{1}{10}\end{matrix}\right.\)
c)
\(|\frac{3}{4}x-\frac{3}{4}|-\frac{3}{4}=|-\frac{3}{4}|=\frac{3}{4}\)
\(\Leftrightarrow |\frac{3}{4}x-\frac{3}{4}|=\frac{3}{2}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}x-\frac{3}{4}=\frac{3}{2}\\ \frac{3}{4}x-\frac{3}{4}=-\frac{3}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)
Bài 3:
a) Ta thấy:
\(|x+\frac{15}{19}|\geq 0, \forall x\Rightarrow A\ge 0-1=-1\)
Vậy GTNN của $A$ là $-1$ khi \(x+\frac{15}{19}=0\Leftrightarrow x=-\frac{15}{19}\)
b)Vì \(|x-\frac{4}{7}|\geq 0, \forall x\Rightarrow B\geq \frac{1}{2}+0=\frac{1}{2}\)
Vậy GTNN của $B$ là $\frac{1}{2}$ khi \(x-\frac{4}{7}=0\Leftrightarrow x=\frac{4}{7}\)
\(a,C=\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Ta có \(\left|\dfrac{1}{3}x+4\right|\ge0\)
\(\Rightarrow\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\ge1\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(\left|\dfrac{1}{3}x+4\right|=0\)
\(\Leftrightarrow\dfrac{1}{3}x+4=0\)
\(\Leftrightarrow\dfrac{1}{3}x=0-4=-4\)
\(\Leftrightarrow x=-4:\dfrac{1}{3}\)
\(\Leftrightarrow x=-12\)
Vậy \(\min\limits_C=1\dfrac{2}{3}\Leftrightarrow x=-12\)
\(b,D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)
Ta có : \(\left\{{}\begin{matrix}\left|x-6\right|\ge-x+6\\\left|x+\dfrac{5}{4}\right|\ge x+\dfrac{5}{4}\end{matrix}\right.\)
\(\Rightarrow\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\ge-x+6+x+\dfrac{5}{4}=\dfrac{29}{4}\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}-x+6\ge0\\x+\dfrac{5}{4}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le6\\x\ge-\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(\min\limits_D=\dfrac{29}{4}\Leftrightarrow-\dfrac{5}{4}\le x\le6\)
b) \(D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)
\(D=\left|6-x\right|+\left|x+\dfrac{5}{4}\right|\ge\left|6-x+x+\dfrac{5}{4}\right|=\dfrac{29}{4}\)
Dấu = xảy ra khi \(\left(6-x\right)\left(x+\dfrac{5}{4}\right)\ge0\Leftrightarrow-\dfrac{5}{4}\le x\le6\)
vậy \(D_{min}=\dfrac{29}{4}\) khi \(-\dfrac{5}{4}\le x\le6\)
a: \(A=\left|x-\dfrac{7}{4}\right|+\dfrac{8}{5}>=\dfrac{8}{5}\)
Dấu = xảy ra khi x=7/4
b: \(B=\left|5-x\right|+\left|x+\dfrac{3}{4}\right|>=\left|5-x+x+\dfrac{3}{4}\right|=\dfrac{23}{4}\)
Dấu = xảy ra khi (x-5)(x+3/4)<=0
=>-3/4<=x<=5
mik chỉ làm được một bài thôi cậu chọn đi bài nào nói với mik , mik làm cho
Bài 1:
a) \(\left|x-\dfrac{2}{3}\right|+\left|y+x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-\dfrac{2}{3}\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{3}=0\\y+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{2}{3}\end{matrix}\right.\)
b) \(\left(x-2y\right)^2+\left|x+\dfrac{1}{6}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left|x+\dfrac{1}{6}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x+\dfrac{1}{6}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=x\\x=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=-\dfrac{1}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{12}\\x=\dfrac{-1}{6}\end{matrix}\right.\)
a: \(B=\left|2-x\right|+1.5>=1.5\)
Dấu '=' xảy ra khi x=2
b: \(B=-5\left|1-4x\right|-1\le-1\)
Dấu '=' xảy ra khi x=1/4
g: \(C=x^2+\left|y-2\right|-5>=-5\)
Dấu '=' xảy ra khi x=0 và y=2
1, \(x\left(x+\dfrac{2}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)
Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)
\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)
Vậy, ...
b, \(\left|x-\dfrac{1}{3}\right|\ge0\)
Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
Vậy, ...
1)
a)
\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2)
a)
\(\left|x+\dfrac{4}{6}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)
b)
\(\left|x-\dfrac{1}{3}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)
a. Để A có giá trị nhỏ nhất thì \(\left|x-\dfrac{3}{4}\right|=0\)
\(\left|x-\dfrac{3}{4}\right|=0\Rightarrow x-\dfrac{3}{4}=0\Rightarrow x=\dfrac{3}{4}\)
Vậy A có giá trj nhỏ nhất khi \(x=\dfrac{3}{4}\)