Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
A=\(x^3-2x^2+x\)
=x.(x2-2x+1)
=x(x-1)2
B=\(2x^2+4x+2-2y^2\)
=\(2\left(x^2+2x+1-y^2\right)\)
=\(2.\left[\left(x+1\right)^1-y^2\right]\)
=\(2\left(x+1-y\right)\left(x+1+y\right)\)
C=\(2xy-x^2-y^2+16\)
=\(-\left(-2xy+x^2+y^2-16\right)\)
=\(-\left[\left(x-y\right)^2-4^2\right]\)
=-(x-y-4)(x-y+4)
D=\(x^3+2x^2y+xy^2-9x\)
=\(x\left(x^2+2xy-y^2-9\right)\)
=\(x.\left[\left(x-y\right)^2-3^2\right]\)
=x.(x-y-3)(x-y+3)
E=\(2x-2y-x^2+2xy-y^2\)
\(=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)\)
=\(2\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)
=(x-y)(2x-2y-x+y)
=(x-y)(x+y)
1) a) Đặt biểu thức là A
\(A=2x^2+4y^2-4xy-4x-4y+2017\)
\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)
\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)
Vậy: MinA=2008 khi x=-3; y=-2
3) a) \(A=\dfrac{1}{x^2+x+1}\)
\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)
Vậy MinA là \(\dfrac{4}{3}\) khi x=-0,5
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
A=2x2+y2-2xy-2x+3
= (x2-2xy+y2)+(x2-2x+1)+2
= (x-y)2+(x-1)2 +2
do (x-y)2 ≥ 0 ∀ x,y
(x-1)2 ≥ 0 ∀ x
=> (x-y)2+(x-1)2 +2 ≥ 2
=> A ≥ 2
nimA=2 dấu "=" xảy ra khi
x-y=0
x-1=0
=> x=y=1
vậy nimA =2 khi x=y=1