\(_{|2000x+2012|+|2000x-2013}\)

                       ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

Ta có \(\left|2000x+2012\right|+\left|2013-2000x\right|\ge\left|2000x+2012+2013-2000x\right|=\left|4025\right|=4025\)

^.^

16 tháng 8 2018

thank

9 tháng 4 2017

đề kiểu sao vậy viết lại đi

9 tháng 4 2017

đề làm sao bạn ko đọc dc à??????hiuhumucche

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

30 tháng 11 2017

Ta có :

\(\left(-x+y-3\right)^4\ge0\)

\(\left(x-2y\right)^2\ge0\)

\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)

Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)

nên : * \(-x+y-3=0\)và \(x-2y=0\)

\(\Rightarrow y-x=3\)vs \(x=2y\)

\(\Rightarrow x=y-3\)(1)   vs \(x=2y\)(2)

Từ (1) vs (2), ta có : \(y-3=2y\)

\(\Rightarrow y=3\)

\(\Rightarrow x=y-3=3-3=0\)

\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.

6 tháng 3 2019

tìm GTNN của P=(X-2y)^2+(y-2012)^2012

28 tháng 8 2016

\(B=1,5+\left|2-x\right|\)

Có: \(\left|2-x\right|\ge0\)

\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)

Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)

Vậy:  \(Min_A=1,5\)tại \(x=2\)

28 tháng 8 2016

\(C=-\left|x+2\right|\) . Có: \(-\left|x-2\right|\le0\)

Dấu = xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy: \(Max_C=0\) tại \(x=-2\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)