\(x^2+y^2-xy-3x-3y+2029\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2020

\(2B=2x^2+2y^2-2xy-6x-6y+4058\)

\(2B=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+4040\ge4040\)

\(\Rightarrow B\ge2020\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\x-3=0\\y-3=0\end{cases}\Leftrightarrow x=y=3}\)

Vậy ....

a/ giá trị nhỏ nhất của A  là 2

b/ giá trị lớn nhất của B là 51

2 tháng 8 2021

tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm

Ta có: x + y = 1
   <=> (x + y)3 = 1
   <=> x3 + y3 + 3xy(x + y) = 1
   <=> x3 + y3 + 3xy = 1 (do x + y = 1)
   <=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
   xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x =  y = 12

24 tháng 7 2019

\(H=2x^2+9y^2-6xy-6y-12y+2004\)

\(\Rightarrow2H=4x^2+18y^2-12xy-12x-24y+4008\)

             \(=\left(4x^2-12xy+9y^2\right)+9y^2-12x-24y+4008\)

             \(=\left(2x-3y\right)^2-6\left(2x-3y\right)+9+9y^2-42y+49+3950\)

             \(=\left(2x-3y-3\right)^2+\left(3y-7\right)^2+3950\ge3950\)

\(\Rightarrow2H\ge3950\)

\(\Rightarrow H\ge1975\)

Dấu "=" tại \(\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

24 tháng 7 2019

\(J=x^2+xy+y^2-3x-3y+1999\)

   \(=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}-3x-3y+1999\)

   \(=\left(x+\frac{y}{2}\right)^2-3\left(x+\frac{y}{2}\right)+\frac{9}{4}+3\left(\frac{y^2}{4}-\frac{y}{2}+\frac{1}{4}\right)+1996\)

    \(=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2+1996\ge1996\)

Dấu "=" tại \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

10 tháng 5 2017

ta có \(2A=\left(x^2+2xy+y^2\right)+\left(x^2-6x+9\right)+\left(y^2-6x+9\right)+4032\)

\(2A=\left(x+y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+4032\)

\(\Rightarrow2A\ge4032\Leftrightarrow A\ge2016\)

17 tháng 9 2019

\(M=\frac{x^2+9y^2}{xy}-\frac{8y^2}{xy}\)

\(\ge\frac{2\sqrt{9x^2y^2}}{xy}-\frac{8.y.y}{xy}\)

\(\ge6-\frac{8.\frac{x}{3}.y}{xy}=6-\frac{8}{3}=\frac{10}{3}\)

Đẳng thức xảy ra khi x = 3y.

Vậy..

17 tháng 9 2019

\(x\ge3y\Leftrightarrow\frac{x}{y}\ge3\)

\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)

\(\text{Đặt}\frac{x}{y}=a\Rightarrow a\ge3,M=a+\frac{1}{a}\)

Dùng điểm rơi a=3

\(M=\frac{8}{9}a+\frac{1}{9}a+\frac{1}{a}\ge\frac{8}{9}a+\frac{2}{3}\ge\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

NV
4 tháng 10 2020

\(C=\left(x^2+\frac{y^2}{4}+\frac{9}{4}+xy-3x-\frac{3y}{2}\right)+\frac{3}{4}\left(y^2-2y+1\right)-3\)

\(C=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge-3\)

\(C_{min}=-3\) khi \(x=y=1\)

2 tháng 10 2020

C không có GTLN, vì nếu ta tiến x, y đến vô cực thì C cũng tiến đến vô cực.

+) Tìm GTNN:

\(4C=4x^2+4xy+4y^2-12x-12y=\left(2x+y-3\right)^2+3\left(y-1\right)^2-12\ge-12\)

\(\Rightarrow C\ge-3\)

Dấu "=" xảy ra khi và chỉ khi y = 1; x = 1.

Vậy...

4 tháng 10 2020

Này TRẦN MINH HOÀNG, bn lấy -12 ở đâu ra vậy