\(^{x^2+2xy+4y^2+4x+10y+11}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)

\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)

\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)

\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)

Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)

Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)

b) \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)

\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)

\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)

Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3

Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)

9 tháng 8 2016

pn ơi , giải thích hộ t câu a vs, t k hiểu rõ lắm

19 tháng 10 2022

\(D=-5\left(x^2+\dfrac{4}{5}x+\dfrac{1}{5}\right)\)

\(=-5\left(x^2+2\cdot x\cdot\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{1}{25}\right)\)

\(=-5\left(x+\dfrac{2}{5}\right)^2-\dfrac{1}{5}< =-\dfrac{1}{5}\)

Dấu = xảy ra khi x=-2/5

24 tháng 7 2019

\(G=-x^2+2xy-4y^2+2x+10y-8\)

  \(=-\left(x^2-2xy+y^2+1-2x+2y\right)-3\left(y^2-4y+4\right)+5\) 

  \(=-\left(y+1-x\right)^2-3\left(y-2\right)^2+5\le5\)

MaxQ=5 khi \(\hept{\begin{cases}y+1-x=0\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}\)

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

15 tháng 3 2017

1) a) Đặt biểu thức là A

\(A=2x^2+4y^2-4xy-4x-4y+2017\)

\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)

\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)

\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)

Vậy: MinA=2008 khi x=-3; y=-2

15 tháng 3 2017

3) a) \(A=\dfrac{1}{x^2+x+1}\)

\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)

Vậy MinA\(\dfrac{4}{3}\) khi x=-0,5

NV
11 tháng 10 2020

a/ Đề sai, hệ số của \(y^2\) phải âm thì biểu thức mới tồn tại max

b/ \(B=-3x^2-9x-7=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)

\(B_{max}=-\frac{1}{4}\) khi \(x=-\frac{3}{2}\)

c/ \(C=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)

\(C=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

\(C_{max}=5\) khi \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

8 tháng 3 2017

A=x^2-2xy+y^2+y^2-4y+4+2011

=(x-y)^2+(y-2)^2+2011

vì (x-y)^2 +(y-2)^2 >=0

nên (x-y)^2+(y-2)^2+2011>=2011

min A=2011 khi x=y và y=2

8 tháng 3 2017

Ta có x^2+2y^2-2xy-4y+2015

        =(x^2-2xy+y^2)+(y^2-4y+4)+2011

       =(x-y)^2+(y-2)^2+2011

ok đến đó tự giải nốt

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1