Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)
= / x+2/ + / x -3/ = /x+2/ + / 3-x / >/ /x+2+3-x/ =5
A min = 5 khi -2 </ x </ 3
\(M=\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)
\(=\sqrt{x^2+2.x.3+3^2}+\sqrt{x^2-2.2x+2^2}\)
\(=\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}\)
TH1 : \(x< -3;\)có :
\(M=-\left(x+3\right)+\left[-\left(x-2\right)\right]\)
\(=-3-x+2-x\)
\(=-1-2x>-1-2.\left(-3\right)=-1+6=5\)
TH2 : \(-3\le x\le2;\)có :
\(M=\left(x+3\right)+\left[-\left(x-2\right)\right]\)
\(=x+2+2-x=4\)
TH3: \(x>2\)
\(\Rightarrow M=\left(x+3\right)+\left(x-2\right)=2x+1\ge2.2+1=5\)
\(\Rightarrow Min_M=4\)
\(\Leftrightarrow-3\le x\le2\)
Vậy ...
Tại hạ chưa học lớp 9 nên làm cách quèn :)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
a/ \(\left|A+B\right|\le\left|A\right|+\left|B\right|\)
\(\Leftrightarrow\left(\left|A+B\right|\right)^2\le\left(\left|A\right|+\left|B\right|\right)^2\)
\(\Leftrightarrow AB\le\left|A\right|.\left|B\right|\) (luôn đúng)
Đẳng thức xảy ra khi \(A.B\ge0\)
b/ \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
Đẳng thức xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\Leftrightarrow-2\le x\le3\)
Vậy minM = 5 tại \(-2\le x\le3\)
c/ \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\) (bạn tự tìm đkxđ)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|4-x\right|=\left|x+9\right|\)
Áp dụng BĐT ở a) cho vế trái : \(\left|2x+5\right|+\left|4-x\right|\ge\left|2x+5+4-x\right|=\left|x+9\right|\)
Đẳng thức xảy ra khi \(\left(2x+5\right)\left(4-x\right)\ge0\Leftrightarrow-\frac{5}{2}\le x\le4\)
Vậy nghiệm của phương trình là \(-\frac{5}{2}\le x\le4\)
\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)
Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)
Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)
\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)
Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)
\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)
Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)
1: Ta có: \(\sqrt{x^2-x+\frac{1}{4}}\)
\(=\sqrt{x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2}\)
\(=\sqrt{\left(x-\frac{1}{2}\right)^2}\)
\(=\left|x-\frac{1}{2}\right|\)
2: Ta có: \(\sqrt{x^2}+\sqrt{x^6}\)
\(=\sqrt{x^2}\cdot1+\sqrt{x^2}\cdot\sqrt{x^4}\)
\(=\sqrt{x^2}\cdot\left(1+\sqrt{x^4}\right)\)
\(=\left|x\right|\cdot\left(1+x^2\right)\)
3: Ta có: \(C=\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{2-2\cdot\sqrt{2}\cdot1+1}-\sqrt{4-2\cdot2\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{2}-1\right|-\left|2-\sqrt{2}\right|\)
\(=\sqrt{2}-1-2+\sqrt{2}\)
\(=2\sqrt{2}-3\)
a) Ta có: \(F=\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy Min(F) = 1 khi x=2
b) \(D=\sqrt{2x^2-4x+10}=\sqrt{2\left(x-1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min\left(D\right)=2\sqrt{2}\Leftrightarrow x=1\)
c) \(G=\sqrt{2x^2-6x+5}=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}}\ge\sqrt{\frac{1}{2}}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
Vậy \(Min\left(G\right)=\frac{\sqrt{2}}{2}\Leftrightarrow x=\frac{3}{2}\)
\(\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x+2\right|+\left|x-3\right|\)
\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
Dấu "=" xảy ra khi:
\(\left(x+2\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow x+2\ge0\text{ và }3-x\ge0\text{ hoặc }x+2\le0\text{ và }3-x\le0\)
\(\Leftrightarrow x\ge-2\text{ và }x\le3\text{ hoặc }x\le-2\text{ và }x\ge3\left(loại\right)\)
Vậy giá trị nhỏ nhất của biểu thức là 5 tại \(-2\le x\le3\)