Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
Ta có:
\(x^2\ge 0=>x^2-9\ge -9\)
\(|y-2|\ge 0\)
\(=>\left(x^2-9\right)+|y-2|\ge -9\)
\(=>\left(x^2-9\right)+|y-2|+10\ge 1\)
Dấu '=" xảy ra \(\orbr{\begin{cases}x^2-9=-9\\y+2=0\end{cases}}=>\orbr{\begin{cases}x^2=0\\y=0-2\end{cases}=>\orbr{\begin{cases}x=0\\y=-2\end{cases}}}\)
Vậy giá trị nhỏ nhất của \(\left(x^2-9\right)+|y-2|+10\) là-9 với \( x=0; y=-2\)
Có (x^2-9)+10=x^2+1 >= 1
Và |y-2| >=0
Nên: (x^2-9)+|y-2|+10 >= 1
Dấu "=" xảy ra khi x^2+1=1 => x=0
y-2=0 => y=2
Vậy Biểu thức đạt giá trị nhỏ nhất Min=1 khi x=0 và y=2
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
A= \(\frac{2015}{\left|x\right|-3}\)
Ta có \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|-3\ge-3\forall x\)
\(\Rightarrow\frac{2015}{\left|x\right|-3}\le\frac{2015}{-3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x\right|=0\)
\(\Leftrightarrow x=0\)
Vậy MaxA = \(\frac{-2015}{3}\) \(\Leftrightarrow x=0\)
@@ Học tốt @@
## Chiyuki Fujito
Để A có giá trị nhỏ nhất thì 2015/|x|-3 có giá trị nhỏ nhất => |x|-3 có giá trị nhỏ nhất => |x| có giá trị nhỏ nhất mà x lá số nguyên nên |x|=0 => x=0 . Vậy A có GTNN là 2015/0-3 = 2015/-3 khi và chỉ khi x=0
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
Ta có : \(\left(x-9\right)^2\ge0\)
\(|y-x|\ge0\)
=> \(\left(x-9\right)^2+|y-x|+2015\ge2015\)
=> GTNN của biểu thức \(\left(x-9\right)^2+|y-x|+2015\)là 2015 khi
x - 9 = 0 và y - x = 0
=> x = 0 và y = 9
Vậy GTNN của biểu thức \(\left(x-9\right)^2+|y-x|+2015\)là 2015 khi x = y = 9
Study well ! >_<