\(\frac{1}{2}\)\

B= \x + 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Ta luôn biết biểu thức hay 1 số thực âm nằm trong dấu trị tuyệt đối luôn mang giá trị dương. Vì thế, giá trị nhỏ nhất của biểu thức trong trị tuyệt đối chỉ có thể bằng 0. Suy ra:

\(A=\left|x-\frac{1}{2}\right|\ge0,\forall x\in R\)Vậy minA = 0 khi \(x=\frac{1}{2}\)

\(B=\left|x+\frac{3}{4}\right|+2\ge2,\forall x\in R\)Vậy minB = 2 khi \(x=-\frac{3}{4}\)

25 tháng 6 2017

huhu làm ơn cứu mình với

22 tháng 3 2016

Giúp mk đi

2 tháng 5 2017

a) Với mọi x nguyên ta luôn có:  \(\left(x-1\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\)  x = 1.

Do đó \(A=\left(x-1\right)^2+2008\ge0+2008=2008\)

Vậy GTNN của A là 2008 tại x = 1.

b) Với mọi x nguyên ta luôn có \(\left|x+4\right|\ge0\)

.Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left|x+4\right|=0\)  \(\Leftrightarrow\)  \(x+4=0\)  \(\Leftrightarrow\)  x = -4.

Do đó \(B=\left|x+4\right|+1996\ge0+1996=1996\)

Vậy GTNN của B là 1996 tại x = -4.

2 tháng 5 2017

c)  \(C=\frac{5}{x-2}\) nhỏ nhất  \(\Leftrightarrow\)  x - 2 lớn nhất, mà x nguyên nên ko tìm đc giá trị của x

bn xem lại đề câu c, d được ko

chắc đề là: "Tìm x nguyên để   \(C=\frac{5}{x-2}\) đạt giá trị nguyên nhỏ nhất"

20 tháng 1 2017

Làm khâu rút gọn thôi 

\(=\frac{15}{x+2}+\frac{42}{3x+6}\)

\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)

\(=\frac{3.15+42}{3\left(x+2\right)}\)

\(=\frac{87}{3\left(x+2\right)}\)

\(=\frac{29}{x+2}\)

20 tháng 1 2017

Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm 

22 tháng 3 2016

tớ làm song bài này lâu rôi

22 tháng 3 2016

A =15/x+2 + 14/x+2 = 29/x+2

b) x+2 là U(29) = { -1;1;-29;29}

=> x ={ -3;-1;-31;27}

16 tháng 3 2018

Giải từng bài 

Bài 1 : 

Ta có : 

\(\frac{23+n}{40+n}=\frac{3}{4}\)

\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)

\(\Leftrightarrow\)\(92+4n=120+3n\)

\(\Leftrightarrow\)\(4n-3n=120-92\)

\(\Leftrightarrow\)\(n=28\)

Vậy số cần tìm là \(n=28\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Bài 2 : 

\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)

Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n 

Chúc bạn học tốt ~ 

2 tháng 5 2018

co phai lam het ko

2 tháng 5 2018

bạn làm được câu nào thì bạn làm giúp mk với nhé!

cảm ơn bạn nhiều

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

27 tháng 2 2018

\(A=\frac{4}{a-1}+\frac{b}{a-1}=\frac{b+4}{a-1}\)

\(A=\frac{b+4}{a-1}\)

\(A=\frac{a-1+b-a+5}{a-1}\)

\(A=\frac{b-a+5}{a-1}\)

......