K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

a) Giá trị nhỏ nhất của biểu thức này là :8

b)Giá trị nhỏ nhất của biểu thức này là :22

22 tháng 8 2017

Các bạn có thể giải thích rõ ràng đc ko ạ!!!

24 tháng 8 2017

a, Ta có: \(A=\left|x+2\right|+\left|x-6\right|=\left|x+2\right|+\left|6-x\right|\ge\left|x+2+6-x\right|=8\)

Dấu "=" xảy ra khi \(\left(x+2\right)\left(6-x\right)\ge0\Rightarrow-2\le x\le6\)

Vậy MinA = 8 khi \(-2\le x\le6\)

b, Ta có: \(B=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|7-x\right|\right)+\left(\left|x+2\right|+\left|8-x\right|\right)\)

\(\ge\left|x+5+7-x\right|+\left|x+2+8-x\right|=12+10=22\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)\left(7-x\right)\ge0\\\left(x+2\right)\left(8-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}-5\le x\le7\\-2\le x\le8\end{cases}}\Rightarrow-2\le x\le8}\)

Vậy MinB = 22 khi \(-2\le x\le8\)

c, Ta có: \(C=\left|x-3\right|+\left|x-4\right|+\left|x-5\right|=\left(\left|x-3\right|+\left|5-x\right|\right)+\left|x-4\right|\)

Vì \(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=2\forall x\)  

Và \(\left|x-4\right|\ge0\forall x\) 

\(\Rightarrow B=\left(\left|x-3\right|+\left|x-5\right|\right)+\left|x-4\right|\ge2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-3\right)\left(5-x\right)\ge0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}3\le x\le5\\x=4\end{cases}\Rightarrow}x=4}\)

Vậy MinC = 2 khi x = 4

NM
6 tháng 9 2021

ta có 

\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)

Dấu bằng xảy ra khi \(-5\le x\le-2\)

\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)

Dấu bằng xảy ra khi \(x=2\)

\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)

Dấu bằng xảy ra khi \(x\ge2\)

3 tháng 8 2023

Nguyễn Minh Quang sai dấu câu A rồi

 

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

2 tháng 8 2016

học cô thủy đúng ko

3 tháng 8 2016

Chắc chắn học cô Thủy Lê Độ

9 tháng 5 2019

      Áp dụng bất đẳng thức |m|+ |n|≥ |m + n| .Dấu = xảy ra khi m,n cùng dấu

     A ≥ |x − a + x − b|+ |x − c + x − d| = |2x − a − b|+ |c + d − 2x| ≥ |2x − a − b − 2x + c + d| =|c + d − a − b|

     Dấu = xảy ra khi x − a và x − b cùng dấu hay(x ≤ a hoặc x ≥ b)

                         x − c và x − d cùng dấu hay(x ≤ c hoặc x ≥ d)

                       2x − a − b và c + d − 2x cùng dấu hay (x + b ≤ 2x ≤ c + d)

        Vậy Min A =c+d-a-b khi b ≤ x ≤ c 

~ Học tốt ~ K cho mk nha. Thank you.

9 tháng 5 2019

Bạn "  I love Family " ơi, đề bài ng' ta chỉ cho a,b,c,d là các số dương thôi mà sao cách giải giống với kiểu đềa<b<c<d trên mạng vậy?
 

2: B=|x+5|-|x-2|<=|x+5-x+2|=7

Dấu = xảy ra khi -5<=x<=2

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

2 tháng 9 2020

A = x2 + 4x + 9

= ( x2 + 4x + 4 ) + 5

= ( x + 2 )2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 5 <=> x = -2

B = x2 + 6x + 12

= ( x2 + 6x + 9 ) + 3

= ( x + 3 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinB = 3 <=> x = -3

C = x2 + 3x + 6

= ( x2 + 3x + 9/4 ) + 15/4

= ( x + 3/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2

=> MinC = 15/4 <=> x = -3/2

D = x2 + 5x + 10

= ( x2 + 5x + 25/4 ) + 15/4

= ( x + 5/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinD = 15/4 <=> x = -5/2

E = 2x2 + 7x + 5

= 2( x2 + 7/2x + 49/16 ) - 9/8

= 2( x + 7/4 )2 - 9/8 ≥ -9/8 ∀ x

Đẳng thức xảy ra <=> x + 7/4 = 0 => x = -7/4

=> MinE = -9/8 <=> x = -7/4

F = 3x2 + 8x + 9

= 3( x2 + 8/3x + 16/9 ) + 11/3

= 3( x + 4/3 )2 + 11/3 ≥ 11/3 ∀ x

Đẳng thức xảy ra <=> x + 4/3 = 0 => x = -4/3

=> MinF = 11/3 <=> x = -4/3