\(3x^2-4xy+2y^2-3x+2007\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Đặt \(A=3x^2-4xy+2y^2-3x+2007\)

       \(A=2x^2-4xy+2y^2+x^2-3x+2007\)

      \(A=2\left(x-y\right)^2+x^2-2.\frac{3}{2}+\frac{9}{4}+\frac{8019}{4}\)

        \(A=2\left(x-y\right)^2+\left(x-\frac{3}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)

              Dấu = xảy ra khi \(\hept{\begin{cases}x-y=0\\x-\frac{3}{2}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

Vậy Min A = \(\frac{8019}{4}\) khi \(x=y=\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

Lời giải:

Ta có \(A=3x^2-4xy+2y^2-3x+2007\)

\(\Leftrightarrow A=(x^2-3x+\frac{9}{4})+2(x^2-2xy+y^2)+\frac{8019}{4}\)

\(\Leftrightarrow A=(x-\frac{3}{2})^2+2(x-y)^2+\frac{8019}{4}\)

Thấy \((x-\frac{3}{2})^2,(x-y)^2\geq 0\) nên \(A\geq \frac{8019}{4}\)

Vậy \(A_{\min}=\frac{8019}{4}\Leftrightarrow x=y=\frac{3}{2}\)

22 tháng 6 2019

C= 2x+ 4y2 + 4xy - 3x -1

 = (x2 + 4xy + 4y2) + (x2 - 3x + 9/4) - 13/4

 = (x+2y)2 + (x-3/2)2 - 13/4

  (x+2y)2 >=0

    (x-3/2)2 >=0

=) MinC= -13/4  (dấu '=' xảy ra khi x=3/2 ; y=-3/4)

vậy ....

chúc bn hc tốt

22 tháng 6 2019

cảm ơn bạn

25 tháng 12 2018

\(A=13x^2+y^2+4xy-2y-16x+2015\)

\(A=\left(4x^2-4x+1\right)+2y\left(2x-1\right)+y^2+\left(9x^2-12x+4\right)+2010\)

\(A=\left(2x-1\right)^2+2y\left(2x-1\right)+y^2+\left(3x-2\right)^2+2010\)

\(A=\left(2x-1+y\right)^2+\left(3x-2\right)^2+2010\)

Đến đây bạn tự làm nốt nhé~

không làm được thì ib

20 tháng 7 2018

Ta có:

\(C=2x^2+3y^2+4xy-8x-2y+18\)

\(C=2\left(x^2+2xy+y^2\right)+y^2-8x-2y+18\)

\(C=2[\left(x+y\right)^2-4\left(x+y\right)+4]+\left(y^2+6y+9\right)+1\)

\(C=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x+y=2\)và \(y=-3\)

Hay x = 5 , y = -3

3 tháng 11 2024

H= (2x+y)^2 - 2(2x+y) + 1+ y^2 - 2y + 1 + 1

H= (2x+y+1)^2 + (y+2)^2 + 1 

Min h là 1 

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)