Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
2A = 2x^2 - 2xy + 2y^2 - 4x - 4y
2A = ( x^2 - 2xy + y^2 ) + ( x^2 - 4x + 2^2 ) + ( y^2 - 4y + 2^2 ) - 8
2A = ( x - y )^2 + ( x - 2 )^2 + ( y - 2 )^2 - 8
Ta có : ( x - y )^2 >= 0 ; ( x - 2 )^2 >= 0 ; ( y - 2 )^2 >= 0 với mọi x , y
=> Min 2A = 0 + 0 + 0 - 8 = -8
=> Min A = -8 : 2 = -4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2+\dfrac{y^2}{4}+1-xy-2x+y+\dfrac{3y^2}{4}-3y+3+5\)
\(A=\left(x-\dfrac{y}{2}-1\right)^2+\dfrac{3}{4}\left(y-2\right)^2+5\ge5\)
\(\Rightarrow A_{min}=5\) khi \(\left\{{}\begin{matrix}x-\dfrac{y}{2}-1=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ giá trị nhỏ nhất của A là 2
b/ giá trị lớn nhất của B là 51
tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm
Ta có: x + y = 1
<=> (x + y)3 = 1
<=> x3 + y3 + 3xy(x + y) = 1
<=> x3 + y3 + 3xy = 1 (do x + y = 1)
<=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x = y = 12
![](https://rs.olm.vn/images/avt/0.png?1311)
P=2x+y+30x+5y
=(6x5+30x)+(y5+5y)+(4x5+4y5)
≥2.6+2+45.10=22
Vậy GTNN là P = 22 khi x = y = 5
Ta có: \(P=\frac{9x+18y}{xy}+\frac{2x-5y}{12}+2018\)
\(=\frac{9}{y}+\frac{18}{x}+\frac{x}{6}-\frac{5y}{12}+2018\)
\(=\frac{18}{x}+\frac{x}{2}+\frac{9}{y}+\frac{y}{4}-\frac{x}{3}-\frac{2y}{3}+2018\)
\(=\left(\frac{18}{x}+\frac{x}{2}\right)+\left(\frac{9}{y}+\frac{y}{4}\right)-\frac{x+2y}{3}+2018\)
Vì \(x,y>0\Rightarrow\frac{18}{x}>;\frac{x}{2}>0\)
Áp dụng BĐT cô si cho hai số dương ta có:
\(\frac{18}{x}+\frac{x}{2}\ge2\sqrt{\frac{18}{x}.\frac{x}{2}}=6\)
\(\frac{9}{y}+\frac{y}{4}\ge2\sqrt{\frac{9}{y}.\frac{y}{4}}=3\)
Vì \(x+2y\le18\)
\(\Rightarrow\frac{x+2y}{3}\le\frac{18}{3}=6\)
\(\Rightarrow\frac{-x+2y}{3}\ge-6\)
\(\Rightarrow P\ge6+3-6+2018\)
\(\Rightarrow P\ge2021\)
\(\Rightarrow MinP=2021\Leftrightarrow\hept{\begin{cases}\frac{18}{x}=\frac{x}{2}\\\frac{9}{y}=\frac{y}{4}\\x+2y=18\end{cases}}\)và x,y>0
\(\Leftrightarrow\hept{\begin{cases}x=6\\y=6\end{cases}\Rightarrow x=y=6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=\(\left(x-y\right)^2-2.6.\left(x-y\right)+36+5y^2+10y+5+4\)
=\(\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Dấu bằng xảy ra khi y=1 và x=5
2B=\(2x^2+2y^2-2xy-2x+2y+2\)
=\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
=>B\(\ge\)0
![](https://rs.olm.vn/images/avt/0.png?1311)
ta đi chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)(tự chứng minh nhé, nhân chéo lên xong phân tích ra nó sẽ ra (a-b)^2/ab lớn hơn bằng 0)
\(M=\frac{18}{2xy}+\frac{17}{x^2+y^2}\ge\frac{17.4}{\left(x+y\right)^2}+\frac{1}{2xy}\)
Chứng minh được \(2xy\le\frac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\Rightarrow M\ge\frac{68}{16^2}+\frac{2}{\left(x+y\right)^2}=\frac{17}{64}+\frac{2}{16^2}=\frac{35}{128}\)
Đẳng thức xảy ra <=> x=y=8
\(A=x^2+\dfrac{y^2}{4}+1-xy-2x+y+\dfrac{3y^2}{4}-3y+3+5\)
\(A=\left(x-\dfrac{y}{2}-1\right)^2+\dfrac{3}{4}\left(y-2\right)^2+5\ge5\)
\(\Rightarrow A_{min}=5\) khi \(\left\{{}\begin{matrix}y-2=0\\x-\dfrac{y}{2}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)