Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left(x+1\right)^{2018}\ge0\\\left|y-1\right|\ge0\end{cases}}\Rightarrow\left(x+1\right)^{2018}+\left|y-1\right|\ge0\)
dấu = xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^{2018}=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
\(P=x^{2019}.y^{2018}=\left(-1\right)^{2019}.1^{2018}=-1.1=-1\)
Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\left(\forall x\right)\\\left(3y+4\right)^{2020}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\left(\forall x,y\right)\)
Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\left(\forall x,y\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Khi đó thay vào ta được:
\(M+5\cdot\left(\frac{5}{2}\right)^2-2\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)=6\cdot\left(\frac{5}{2}\right)^2+9\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(\Leftrightarrow M+\frac{455}{12}=\frac{103}{18}\)
\(\Rightarrow M=-\frac{1159}{36}\)
mik chỉ làm được một bài thôi cậu chọn đi bài nào nói với mik , mik làm cho
Bài 1:
a) \(\left|x-\dfrac{2}{3}\right|+\left|y+x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-\dfrac{2}{3}\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{3}=0\\y+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{2}{3}\end{matrix}\right.\)
b) \(\left(x-2y\right)^2+\left|x+\dfrac{1}{6}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left|x+\dfrac{1}{6}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x+\dfrac{1}{6}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=x\\x=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=-\dfrac{1}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{12}\\x=\dfrac{-1}{6}\end{matrix}\right.\)
phần A, B bạn làm như bạn nguyễn quang trung còn C,D làm theo mình:
\(C=\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\)
vì \(\left|x-\frac{3}{5}\right|\ge0\forall x\)
nên \(\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\le\frac{2017}{2018}\forall x\)
vậy \(MaxC=\frac{2017}{2018}\Leftrightarrow x=\frac{3}{5}\)
\(D=\left|x-2\right|+\left|y+1\right|+3\)
\(\left|x-2\right|\ge0;\left|y+1\right|\ge0\forall x\)
nên \(\left|x-2\right|+\left|y+1\right|+3\ge3\forall x\)
vậy \(MinA=3\Leftrightarrow x=2;y=-1\)
a ) Ta có : A = \(\left|x+\frac{1}{2}\right|\ge0\forall x\)
Vậy Amin = 0 , khi x = \(-\frac{1}{2}\)
b) \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\)
Mà : \(\left|\frac{3}{7}-x\right|\ge0\forall x\)
Nên : \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\ge\frac{1}{9}\forall x\)
Vậy Bmin = \(\frac{1}{9}\) kh x = \(\frac{3}{7}\)