K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Lời giải:

Ta có:
\(4M=4a^2+4ab+4b^2-12a-12b+8052\)

\(=(4a^2+4ab+b^2)+3b^2-12a-12b+8052\)

\(=(2a+b)^2-6(2a+b)+9+3b^2-6b+8043\)

\(=[(2a+b)^2-6(2a+b)+9]+3(b^2-2b+1)+8040\)

\(=(2a+b-3)^2+3(b-1)^2+8040\)

\(\geq 0+3.0+8040=8040\)

\(\Rightarrow M\geq \frac{8040}{4}=2010\)

Vậy \(M_{\min}=2010\Leftrightarrow \left\{\begin{matrix} 2a+b-3=0\\ b-1=0\end{matrix}\right. \Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\)

21 tháng 10 2016

Với các bài toán tìm max, min 2 biến kiểu như thế này, em hay cố gắng nhân M lên n lần để tạo thêm được các số hạng, sang đó ghép tạo thành các bình phương.

Cách làm như sau:

\(4M=4a^2+4ab+4b^2-12a-12b+8004\)

\(=\left(4a^2+4ab+b^2\right)-6\left(2a+b\right)+3\left(b^2-2b\right)+8004\)

\(=\left(2a+b\right)^2-6\left(2a+b\right)+9+3\left(b^2-2b+1\right)+7992\)

\(=\left(2a+b-3\right)^2+3\left(b-1\right)^2+7992\ge7992\)

Vậy 4M min = 7992, vây M min = 1998.

Vậy min M = 1998 khi \(\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)

25 tháng 10 2016

GTNN = -10

cách làm

M = ...

= 2(a2+b2)+a2+b2+c2

= 2(a2+b2)+(a+b+c)2-2(ab+bc+ac) (1)

mà ab+bc+ac=5

=> (1) = 2(a2+b2)+(a+b+c)2-10

có a2 và b2 \(\ge\) 0

2 >0

(a+b+c)2 \(\ge\) 0

=> (1) \(\ge\) -10

=> M min = -10

hơi sơ sài nhỉ, ko hiểu thì hỏi, tôi chỉ cho

25 tháng 10 2016

mình cảm ơn nha

 

Tìm GTNH: P=x^2+xy+y^2-3x-3y+2010? - Yahoo Hỏi & Đáp

https://vn.answers.yahoo.com/question/index?qid=20100903224130AAhmqxW

27 tháng 2 2021

cháu tôi học ghê thế :))

a) 3x3 - 7x2 + 17x - 5

= 3x3 - x2 - 6x2 + 2x + 15x - 5

= x2( 3x - 1 ) - 2x( 3x - 1 ) + 5( 3x - 1 )

= ( 3x - 1 )( x2 - 2x + 5 )

b) Đặt A = a2 + ab + b2 - 3a - 3b + 3

=> 4A = 4a2 + 4ab + 4b2 - 12a - 12b + 12

= ( 4a2 + 4ab + b2 - 12a - 6b + 9 ) + ( 3b2 - 6b + 3 )

= ( 2a + b - 3 )2 + 3( b - 1 )2 ≥ 0 ∀ a, b

hay 4A ≥ 0 => A ≥ 0

Dấu "=" xảy ra <=> a = b = 1

NM
27 tháng 2 2021

a.

\(3x^3-7x^2+17x-5=3x^3-x^2-6x^2+2x+15x-5\)

\(=\left(3x-1\right)\left[x^2-2x+5\right]\)

b.\(a^2+ab+b^2-3a-3b+3=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)

\(=\left[a-1+\frac{b-1}{2}\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\)

dấu bằng xảy ra khi \(a-1=b-1=0\Leftrightarrow a=b=1\)

29 tháng 3 2021

câu trả lời

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự