Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+ab+b^2-3a-3b+2016=\left(a^2+a\left(b-3\right)+\frac{\left(b-3\right)^2}{4}\right)+\left(\frac{3b^2}{4}-\frac{3}{2}b+\frac{3}{4}\right)+2013\)
\(=\left(a+\frac{b-3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2013\ge2013\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a+\frac{b-3}{2}=0\\b-1=0\end{cases}\Leftrightarrow}a=b=1\)
Vậy BT đạt giá trị nhỏ nhất bằng 2013 tại a = b = 1
dễ vãi :
\(4a^2-3a+\frac{1}{4a}+2018=4a^2-4a+1+a+\frac{1}{4a}+2017=\left(2a-1\right)^2+a+\frac{1}{4a}+2017\)
áp dụng BDT cosooossi 2 số ta có: \(a+\frac{1}{4a}\ge2\sqrt{a.\frac{1}{4a}}=2\sqrt{\frac{1}{4}}=2.\frac{1}{2}=1\)
\(\left(2a-1\right)^2\ge0\forall a\)
nên: \(\left(2a-1\right)^2+a+\frac{1}{4a}+2017\ge2018\forall a\)hay \(4a^2-3a+\frac{1}{4a}+2018\ge2018\forall a\)
dấu = xảy ra <=>\(a=\frac{1}{2}\)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
ĐKXĐ : x-2 > 0 <=> x > 2
\(A=x-2\sqrt{x-2}+3\)
\(=\left(x-2\right)-2\sqrt{x-2}+1+4\)
\(=\left(\sqrt{x-2}-1\right)^2+4\ge4\)
Dấu "=" xảy ra <=> \(\left(\sqrt{x-2}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x-2}=1\)
\(\Leftrightarrow x-2=1\)
\(\Leftrightarrow x=3\)
Vậy Amin= 4 <=> x=3
GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2
GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4
Ta có: \(A=3\left(a^2-6ab+9b^2\right)+5\left(c^2-6c+9\right)+237-45\)\(A=3\left(a-3b\right)^2+5\left(c-3\right)^2+192\ge192\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-3b=0\\c-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3b\\c=3\end{matrix}\right.\)
Vậy minA = 192 khi a=3b và c=3
A=3a2+27b2+5c2-18ab-30c+237
=(3a2-18ab+27b2)+(5c2-30c+45)+192
=3(a2-6ab+9b2)+5(c2-6c+9)+192
=3(a-3b)2+5(c-3)2+192\(\ge192\)
=> Giá trị nhỏ nhất của A là 192 khi và chỉ khi \(\left\{{}\begin{matrix}a=3b\\c=3\end{matrix}\right.\)